7. SUBJECT DETAILS

7.4

II	NSTR	UMEN	ΓΑΤΙΟΝ	
7.	4.1	Objecti	ve and Relevance	
7.	4.2	Scope		
7.	4.3	Prerequ	iisites	
7.	4.4	Syllabus		
		i.	JNTU	
		ii.	GATE	
		iii.	IES	
7.	.4.5	Sugges	ted Books	
7.	4.6	Websites		
7.	4.7	Experts' Details		
7.	4.8	Journal	S	
7.	4.9	Finding	g and Development	
7.	4.10	Session	Plan	
		i.	Theory	
		ii.	Tutorial	
7.	4.11	Student	t Seminar Topics	
7.	4.12	Questic	on Bank	
		i.	JNTU	
		ii.	GATE	
		iii.	IES	

7.4.1 OBJECTIVE AND RELEVANCE

Instrumentation is a science which deals with measurement and control. The knowledge of instrumentation and its practical applications is of vital importance in the modern competitive industrial environment. The most important factor in achieving quality and reliability in service of any product is its dimensional control. Due to rapid development in the field of measurements and industrial instrumentation, the student has to know the basic fundamentals and know about mechanisms and assemblies the functioning of which must meet the stringent design requirement. The course will be instrumental on achieving this objective. The student will acquire knowledge about basic principles involved in measuring instruments and the precision measurement techniques.

7.4.2 SCOPE

Instrumentation is a vast field, scope of this subject restricted to certain parameters like tempreture, pressure,torque, velocity, etc. and measurement of electrical quantities like voltage, frequency and phase. In addition to this students will also exposed to error analysis and signal transmission and reception by modulation and demodulation. Also they will get an overview of some of advanced electronic equipments like Q-meter, digital storage oscilloscope, sampling oscilloscope and wave analyzers.

7.4.3 PREREQUISITES

Requires knowledge of physics, electronic devices and electrical measurements.

7.4.4.1 JNTU SYLLABUS

UNIT-I

OBJECTIVE

Study of this unit will give idea about the types of errors in measurements, types of signals and various terminologies of measurement and how to estimate and minimize the errors in measurements and to make measurement more precise and accurate.

SYLLABUS

Characteristics of Signals: Measuring systems, Performance Characterisitics, Static characteristics, Dynamc Characteristics; Errors in Mesurement-Gross Errors, Systematic Errors, Statistical Analysis of Random Errors.

UNIT-II

OBJECTIVE

To study various standard test signals, their appications and different types of modulation and de-modulation techniques to transmit and receive the signals

SYLLABUS

Signal and their representation : standard test, periodic, aperiodic, modulated signals, sampled data, pulse modulation and pulse code modulation.

UNIT-III

OBJECTIVE

This unit gives idea to students how a CRO works, its internal circuit and types of CROs and their applications also the measurement of different parameters by various methods.

SYLLABUS

Oscilloscope: Cathode Ray oscilloscope, cathode ray tube, time base generator, horizontal and vertical amplifier, CRO probes, appliation of CRO, measurement of phase and frequency, Lissajous patterns, sampling oscilloscope, analog and digital type.

UNIT-IV

OBJECTIVE

This unit deals with types, working principle and applications of digital voltmeters, digital frequency meter and phase measurement and different errors arrised and their remedies in their measurement

SYLLABUS

Digital voltmeters, succesive approximation, ramp, dual slope integration, continuous balance type, micro processor based ramp type DVM, digital frequency meter and, digital phase angle meter.

UNIT-V OBJECTIVE

To study how to analyze different signals at various frequencies, if at of noise on signals and cheking quality of capacitors and inductors.

SYLLABUS

Signal analyzers: Wave analysers- frequency selective analyzers, Heterodyne, application of Wave analyzers, Harmonic analyzers, total Harmonic Distortion, spectrum analysers, Basic spectrum analysers, Spectral display, vector impedance meter, Q-meter, peak reading and RMS voltmeters.

UNIT-VI

OBJECTIVE

To get familiar with the conversion of one physcal quanity to another, principles involved in it and analysis of transducers. They will be able to measure the different parameters by different techniques and physical properties of different optical sensors which can be used for different applications viz., material handling, object detection.

SYLLABUS

Transducers: Definition of Transducers, Advantages of electrical transducers, classification of transducers, characteristics and choice of transducers, principle operation of resistor, inductor, LVDT and capacitor transducers, LVDT applications, strain gauge and its principle of operation, gauge factor, thermistors, thermocouples, synchros, peizoelectric transducers, photovoltaic, photo conductive cells, photo diodes.

UNIT-VII

OBJECTIVE

To know how to measure physical quanitities like strain, displacement, velocity, acceleration, force and torque by different mechanical, electrical and electronic methods.

SYLLABUS

Measurement of Non-Electrical Quantities-I: Measurement of strain, gauge sensitivity, displacement, velocity, angular velocity, acceleration, Forece, Torque.

UNIT-VIII

OBJECTIVE

To study Instumentation involved in process Industries in Temperature, Pressure, Flow and level by different methods.

SYLLABUS

Measurement of Non-Electrical quanities -II: Measurement of Temperature, Pressure, Vaccum, Flow Liqued level.

7.4.4.2 GATE SYLLABUS

UNIT-I Error analysis

UNIT-II Not included

UNIT-III Oscilloscopes

UNIT-IV

Digital voltmeters, Frequency and Phase Meters

UNIT-V Q-meters

UNIT-VI Not included

UNIT-VII Not included

UNIT-VIII Not included

7.4.4.3 IES SYLLABUS

UNIT-I Error analysis

UNIT-II Not included

UNIT-III Not included

UNIT-IV Digital voltmeters, Frequency and Phase Meters

UNIT-V Q-meters

UNIT-VI Different Transducers and their Principles

UNIT-VII Strain, Velocity and Torque measurements.

UNIT-VIII Temperature and Pressure Measurements.

7.4.5 SUGGESTED BOOKS

TEXT BOOKS

- T1 Transducers and Instrumentation, D.V.S. Murthy, PHI.
- T2 Instrumentation: Devices and Systems, C.S.Rangan, G.R.Sarma and Mani, TMH.
- T3 Modern Electronic Instrumentation and measurement techniques, A.D.Helfrick and W.D.Cooper, PHI.
- T4 Electronic Instrumentation, H.S.Kalsi TMH, Ed.1985.

REFERENCE BOOKS

- R1 Measurements Systems, Applications and Design, D.O.Doebilin, MGH
- R2 Electrical and Electronic Measurements and Instrumentation, A.K.Sawhney, Dhanpatrai and Sons.
- R3 Principles of Measurement and Instrumentation, A.S.Morris, PHI.
- R4 Instrumentation, Measurement and Analysis, Nakra and Choudhary, PHI.

7.4.6 WEBSITES

- 1. www.mit.edu
- 2. www.gsas.harward.edu
- 3. www.soe.stanford.edu
- 4. www.eng.ufl.edu
- 5. www.iiid.ernet.in
- 6. www.bits-pilani.ac.in
- 7. www.iisc.ernet.in
- 8. www.prinston.edu
- 9. www.ece.umn.edu
- 10. www.instrumetationonline .com
- 11. www.instrumentationguide.com
- 12. www.controengg.com

7.4.7 EXPERTS' DETAILS

INTERNATIONAL

- Dr. Shieh, Senior Lecturer, The University of Melbourne email : shieh@ee.unimelb.edu.au
- Mr. Clayton R. Paul Professor, Electronics and Computer Engineering School of Engineering Mercer University,Georgia email : faculty.mercer.edu
- George J. Pappas Professor, Department of Electrical and Systems Engineering University of Pennsylvania. email :pappasg@ee.upenn.edu
- Dr. Eyad H. Abed Professor,
 Director of Institute for Systems Research (ISR) email : abed_eng.umd.edu

NATIONAL

- Ms. Anupama .K Asst. prof Electrical and Electronics / Instrumentation Engineering Group BITS, Pilani email : anupkr@bits-pilani.ac.in
- 2. Ms. G. Uma, M.E. Lecturer,

Department of Instrumentation and Control Engineering, National Institute of Technology, Tiruchirappalli 620015, India email : guma@]nitt.edu

LOCAL

- Mr. S.K.L.V. Sai Prakash, Lecturer, Department of ECE, NIT warangal, email: sai @nitw.ernet.in
- 2. Dr. M. N. Avadhanulu, KITS, Warangal, e-mail: avadhanulu@kits.edu.in

7.4.8 JOURNALS

INTERNATIONAL

- 1. Instrument and Control.
- 2. IEEE instrumentation and Measurment.
- 3. IEEE control system.

NATIONAL

- 1. Electrical India
- 2. Journal of instrumentation society of India.

7.4.9 FINDINGS AND DEVEOPMENTS

- 1. Vibration and fluid velocity measurement by laser techniques, Prof. Enrico P. Tomasini, LAVINYA (2002-2005), thematic network dedicated to laser based equipment for vibration measurements, Department of Mechanics, University of Ancona, Faculty of Engineering.
- 2. Probe without moving parts measures flow angle Corda, Stephen NASA Tech Briefs Flow angle is computed from forces measured by use of strain gauges Dryden Flight Research Center, Edwards, California.
- 3. A MEMS Vertical Fringe Comb Capacitive Pressure Sensor for Biomedical Application, Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 3, K.Shah,

H.Thumu, V. Vibhute, J.Singh and H.P. LeAffilation center of Telecommunication and Microelectronics, AU, pp. 379 – 382

- 4. Tactile sensor based on Piezoelectric resonance, G. Murali Krishna and K.Rajanna, IEEE Sensors Journal, vol. 4, No.5, October 2004, pp. 691 697.
- 5. Design, Fabrication and Performance study of Piezoelectric Crystal based Acoustic Sensor suitable for Aerospace application, Virupaksha D. Chitnis, M.Singaperumal, M.M.Nayak and K. Rajanna, IEEE Transactions on Sensors and Micromachines, vol.12, no.9.
- 6. Metrodyne Measurement Systems (HMS) for determining Phase angles, Enric O Mohns, Page No. 505, Vol. No.56, No.2, April 2007, IEEE Transactions on Instrumentation and Measurement.
- 7. Automated Low-Ohmic Resistance Measurements at the *i* $_{\dot{c}}/_{\dot{c}}$ level, Moutzager, Page No.407, VolNo.56,No.2, April 2007, IEEE Transactions on Instrumentation and Measurement.

- 8. Analysis of linearity and Frequency Response of a Novel Piezoelectric Flex tensional Actuator using a Homodyne Interferometer and J1-J4 method, Marcal, Page No.954, Vol. No.56, No.3, Jun2007, IEEE Transactions on Instrumentation and Measurement.
- 9. A current source for Pico Ammeter Calibration, Callegaro, Page No.1198, Vol. No. 56, No.4, August 2007, IEEE Transactions on Instrumentation and Measurement.

SI. No.	Topics as per JNTU Syllabus	Modules and Sub-modules	Lecture No.	Suggested Books	Remarks
	·	UNIT-I			
1	Measuring System	Introduction to measurement	L1	T1-Ch1, T2-Ch2, R2-Ch1, R3-Ch1, R4-Ch1	GATE IES
2	Performance Characteristics	Accuracy, Precision, Resolution, Sensitivity, Linearity, Drift, Threshold and Hysteresis.	L2	T1-Ch1, T2-Ch2 R1-Ch3, R4-Ch1	GATE IES
3	Errors in Measurements, Gross Errors, Systematic Errors	Types of Errors, Sources and Remedies of Error	L3	T1-Ch1, T2-Ch2,3 R2-Ch1, R3-Ch3 R4-Ch1	GATE IES
4	Estimation of error Systematic and random errors	Systematic errors Definition Sources of systematic errors Reduction of systematic errors Random errors Introduction to statistical analysis Reduction of systematic errors	L4 L5	T1-Ch1,T2-Ch3 R3-Ch3	GATE IES
		UNIT-II			
5	Signals and their representation Standard test signals	Introduction to signals Standard test signals Step input function Ramp input function Parabolic function Unit impulse function	L6	T1-Ch2	
6	Periodic signals Aperiodic signals	Nature of signals Rectangular waveform Rectangular Pulse Train Saw tooth waveform Triangular wave form	L7	TI-Ch2,	

	Modulated signals	Is Importance of modulation		TI-Ch2,			
	Sampled data	Analog modulation					
7		Digital modulation					
		Need for sampling					
		Definition of sample					
		Sampling process					
	Pulse modulation	Basis of pulse modulation	L9	TI-Ch2,			
		Applications					
8		Pulse width modulation					
		Pulse position modulation					
		Pulse frequency modulation					
	Pulse code	Evolution of pulse code modulation	L10	T1-Ch.2,			
0	modulation	Definition of quanta					
9		Quantization					
		Delta modulation					
	Cathode ray	Introduction to display devices	L11	T1-Ch10, T2-Ch21	GATE		
	oscilloscope	Types of display devices		R2-Ch7, R3-Ch7			
		Difference between analog and digital		R4-Ch7(All)			
10		display devices		R2-Ch7(All)			
		Importance of oscilloscope					
		Block diagram and construction					
		Features					
	Cathode ray	Functional parts	L12	T1-Ch10, T2 –Ch2	GATE		
	tube	Principle of focusing an electron beam		R2-Ch7, R3-Ch7			
11		Electrostatic focusing		R4-Ch6			
		Electrostatic deflection					
		Expression for deflection sensitivity					
	Time base	Need for a sweep voltage	L13	T2-Ch21, R2-Ch21	GATE		
	generator	Characteristics of a sweep waveform					
12		Sweep wave form generator (saw					
		tooth generator)					
		Various sweep generators					
	Horizontal and	Vertical amplifier features	L14	T2-Ch21, R2-Ch21	GATE		
	vertical	Horizontal amplifier features	LIS	R2-Ch21			
	amplifier.	Need for horizontal amplifier					
13	CRO probes	Construction					
		Functioning of a probe					
		Classification of probes					
		Direct reading probe					
		Circuit isolation and Detector probe					

	Applications of	Introduction to lissajous patterns	L16	T2-Ch21, R2-Ch21	GATE		
14	CRO	Phase measurement		R3-Ch7			
14	Measurement	Frequency measurement					
	of Phase and						
	frequency						
	Sampling	Purpose of sampling oscilloscope	L17	T2-Ch21, R2-Ch21			
	Oscilloscope	Advantages					
15		Construction					
		Working principle					
		Importance of staircase waveform					
	Analog storage	Advantages of storage oscilloscopes	L18	T2-Ch21, R2-Ch21			
	oscilloscope	over the ordinary oscilloscopes					
16		Analog storage methods					
		Variable Persistence					
		Bistable storage					
17	Digital storage	Difference between analog storage	L19	T2-Ch21, R2-Ch21			
17	oscilloscope	and digital storage oscilloscopes					
	UNIT-IV						
	Digital	Introduction	L20	T4-Ch5, R2-Ch6(All)	GATE		
18	Voltmeter	Difference between analog voltmeter		R4-Ch5	IES		
10		and digital voltmeter					
		Classification of digital voltmeters					
	Successive	Construction	L21	T4-Ch5, R4-Ch5	GATE		
19	Approximation	Working principle			IES		
	type	Advantages and disadvantages.					
	Ramp type	Construction	L22	T4-Ch5, R2-Ch28	GATE		
20	Dual-slope	Working principle			IES		
	Integration type	Advantages and disadvantages.					
	Continuous	Construction	L23	R4-Ch5T4-Ch5, R2-	GATE		
21	balance type	Working principle		Ch28	IES		
21	Microprocessor	Advantages and disadvantages.					
	based						
	voltmeter						
	Digital	Construction	L24	T4-Ch6, R4-Ch6	GATE		
22	frequency	Working principle			IES		
	meter	Advantages and disadvantages					
		High frequency measurement					
	Digital phase	Construction	L25	T4-Ch6, R4-Ch6	GATE		
23	meter	Working principle			IES		
		Advantages and disadvantages.					
	UNIT-V						

	Mayo analyzar	Application of Mayo applyzors	1.26	T2 Ch22 T4 Ch0	
	vvave analyzer,	Application of wave analyzers,	LZO	12-0123,14-019	
24	Frequency	Harmonic Analyzers, Total Harmonic		R2-Ch9, R4-Ch9	
24	selective	distortion, Spectrum analyzers, Basic			
	analyzers	spectrum analyzers, Spectra display			
	Heterodyne				
	Application of	Importance of wave analyzers and	L27	T2-Ch23,T4-Ch9	
	wave analyzers,	their working		R2-Ch9, R4-Ch9	
	Harmonic				
25	distortion				
	analyzer, Total				
	Harmonic				
	distortion				
	Vector	Importance of vector impedance	L28	T2-Ch24,R2-Ch6, R4-	GATE
	impedance	meter		Ch10	
26	meter	Construction and working principle			
20	Q-meter	Q- value			
		Construction of Q-meter and working			
		principle			
	Peak reading	Difference between a dc instrument	L29	T4-Ch4,R2-Ch6	
27	voltmeter	and an ac instrument		R4-Ch4	
		DC voltmeter			
		AC voltmeter	L30	T4-Ch4,R2-Ch	
		Average responding voltmeter		R4-Ch4	
		Peak responding voltmeter			
	RMS Voltmeter	Need for measuring RMS value of	L31	T4-Ch4,R4-Ch4	
28		voltage			
		Block diagram & working principle			
		UNIT-VI			
	Classification of	Definition of a transducer	L32	T2-Ch2. T1-Ch1.	IES
	transducers	Introduction to sensors		T3-Ch11 R2-Ch11	
		Difference between a transducer and		R4-Ch13	
29		a sensor			
23		Types of transducers			
		Difference between electrical and			
		mechanical transducers			
	A duranta and a f		1.22		150
	Advantages of	Electrical transducers	L33	11-CN6,7, 12-CN.2	IES
	transdusars	ACTIVE		13-Ch11, R4-Ch4	
30	transducers	Passive			
		Examples for each.			
		Advantages of one over the other			

	Characteristics	Transducer selection conditions	L34	T3-Ch11.R2-Ch11	IES
	and Choice of	Fundamental transducer parameters		R4-Ch13	
	transducers	Physical conditions			
31		Ambient conditions			
		Environmental conditions			
		Compatibility of the associated			
		equipment			
	Resistive	Construction and operation	135	R4-Ch4 R2-Ch4	
	transducers	Classification		T3-Ch11.T1-Ch6	
32		Potentiometers		R4-Ch13	IES
		Strain gauges			
		Detentiometers	126		
		Construction	L30		
		Working			
		Vorking			
		Loading offect			
		Applications			
		Problems.			150
	Inductive	Construction	L37	R4-Ch4,11-Ch6	IES
	transducers	Working principle		12-Ch4,R4-Ch13	
	LVDI	Equivalent circuit			
33		Advantages and disadvantages.			
		Applications			
		RVDT			
		Construction			
		Working principle			
	Synchro	Definition	L38	T2-Ch4	
		Control type Synchro			
34		Torque transmission type			
		Construction and working principle of			
		each.			
	Capacitive	Construction and operation	L39	T1-Ch6,T2-Ch4	IES
35	transducer	Measurement of liquid level.		R4-Ch13	
		Frequency response			
	Strain Gauge	Introduction to stress and strain.	L40	T3-Ch11,T2-Ch6	
36		Quantities involved.		29,	
				R4-Ch3	

	Gauge factor	Construction of strain gauges	L41	T3-Ch11,T2-Ch6	
		Peizo resistive effect		T1-Ch7,	
37		Derivation of gauge factor		R4-Ch3	
		problems			
	Types of strain	classification of strain gauges	L42		
	gauges	Bonded and unbounded metal			
		strain gauges			
38		Bonded metal foil type			
		Semiconductor type			
		Working principle of each.			
	Thermistors	features	L43	R4-Ch13,R3-Ch12	
	and thermocouples	construction		T3-Ch11,T2-Ch9	
39		resistance-temperature			
		Characteristics			
		applications			
	Piezo electric	Piezo electric effect.	L44	T1-Ch7,T3-Ch11	
	transducer	Properties.		R4-Ch3R1-Ch4	
		Construction and working principle	L45		
40		Derivation for voltage sensitivity			
		and			
		Charge sensitivity.			
		Advantages and disadvantages.			
		problems			
	Photo voltaic	Construction	L46	T1-Ch7,T3-Ch11	
41	cell	Principle of operation		R4-Ch134,	
	Photo	Applications			

	Photo diode	Construction	L47	T1-Ch7,T3-Ch11	
42	Photo transistor	Principle of operation		R4-Ch13	
		Applications			
		Applications			
		UNIT-VII			
	Measurement	Strain gauge circuits	L48	T3-Ch11,T2-Ch6	
	of strain	Construction of strain gauges		29,R4-Ch13	
43		Theory of strain gauges			
		Peizo resistive effect			
	Gauge	Single strain gauge bridge	L49		
	sensitivity	Working principle			
		Definition of gauge sensitivity			
44		Derivation for gauge sensitivity			
		Half bridge			
		Full bridge			
		Problems			
		Introduction to tachometers	L50	R3-Ch20,R1-Ch4	52
		Classification of tachometers			
	Angular velocity measurement	Mechanical tachometers			
45	using tachometers	Electrical tachometers			
	and digital	Stroboscopic method of			
	meters	measurement			
		Digital method of measuring			
		angular velocity.			
46	LVDT	Basic seismic transducer	L51	R4-Ch13,R3-Ch18	
	accelerometer	LVDT accelerometer	152	T2-Ch6,	150
7	Force	measurement	LJZ	12-CIIIU,K3-CIIZI	IES
47	Measurement	Construction and Working principle			

		Importance of torque	L53	T2-Ch10,R4-Ch9				
		measurement						
		Tanana tura dura na		R3-Ch21,R2-Ch29				
	Torque	Torque transducers						
48	measurement	Strain gauge torque meters						
		Inductive torque transducer						
		digital methods						
	UNIT-VIII							
10	Temperature	Measurement of Temperature and	L54	T3-ch11, T2-Ch9,				
49	Measurement	Temperature Compensation		R2-Ch11				
50	Pressure	Classification of Pressure various	L55	T2-Ch7, R3-Ch13	IES			
30	Measurement	methods						
51	Vaccum	Thermocouple Vacuum Gauge,	L56	T2-Ch7, R3-Ch13				
51	Measurement	Ionization Gauge, Pirani Guage						
	Flow	flow measurement	L57	T1-Ch5,R3-Ch14	IES			
	measurement	Classification of flow meters		R4-Ch13,T2-Ch8				
50	using	electromagnetic flow meter						
52	electromagneti	Construction						
	c method	Working principle						
		Advantages and disadvantages						
	Hot wire	Construction	L58	T1-Ch5,R3-Ch14	IES			
	anemometer	Working principle		T2-Ch8				
F 2	Ultrasonic type	Advantages and disadvantages						
53	Liquid level	Level measurement						
	measurement	capacitance method						

		Introduction to tachometers	L50	R3-Ch20,R1-Ch4	52
		Classification of tachometers			
	Angular velocity measurement	Mechanical tachometers			
45	using tachometers	Electrical tachometers			
	and digital	Stroboscopic method of			
	meters	measurement			
		Digital method of measuring angular velocity.			

16	LVDT	Basic seismic transducer	L51	R4-Ch13,R3-Ch18		
40	accelerometer	LVDT accelerometer		T2-Ch6,		
47	Force Measurement	Use of strain gauges in weight measurement Construction and Working principle	L52	T2-Ch10,R3-Ch21	IES	
48	Torque measurement	Importance of torque measurement Torque transducers Strain gauge torque meters Inductive torque transducer digital methods	L53	T2-Ch10,R4-Ch9 R3-Ch21,R2-Ch29		
	UNIT-VIII					
49	Temperature Measurement	Measurement of Temperature and Temperature Compensation	L54	T3-ch11, T2-Ch9, R2-Ch11		
50	Pressure Measurement	Classification of Pressure various methods	L55	T2-Ch7, R3-Ch13	IES	
51	Vaccum Measurement	Thermocouple Vacuum Gauge, Ionization Gauge, Pirani Guage	L56	T2-Ch7, R3-Ch13		
52	Flow measurement using electromagneti c method	flow measurement Classification of flow meters electromagnetic flow meter Construction Working principle Advantages and disadvantages	L57	T1-Ch5,R3-Ch14 R4-Ch13,T2-Ch8	IES	
53	Hot wire anemometer Ultrasonic type Liquid level measurement	Construction Working principle Advantages and disadvantages Level measurement capacitance method	L58	T1-Ch5,R3-Ch14 T2-Ch8	IES	

S. No	Topics scheduled	Salient topics to be discussed
1	Measuring System	Introduction to measurement
	Performance Characteristics	Accuracy, Precision, Resolution, Sensitivity, Linearity,
	Errors in Measurements, Gross Errors,	Drift, Threshold and Hysteresis.
	Systematic Errors	Types of Errors, Sources and Remedies of Error

	Estimation of error	Systematic errors, Definition, Sources of systematic
	Systematic and random errors	errors, Reduction of systematic errors, Random errors
		Introduction to statistical analysis, Reduction of
		systematic errors
2	Signals and their representation	Introduction to signals, Standard test signals,
	Standard test signals	Step input function, Ramp input function,
	Periodic signals	Parabolic function, Unit impulse function,
	Aperiodic signals	Nature of signals, Rectangular waveform,
	Modulated signals	Rectangular Pulse Train, Saw tooth waveform,
	Sampled data	Triangular wave form, Importance of modulation,
		Analog modulation, Digital modulation,
	Pulse modulation	Need for sampling, Definition of sample,
	Pulse code modulation	Sampling process, Basis of pulse modulation,
		Applications, Pulse width modulation,
		Pulse position modulation, Pulse frequency
		modulation, Evolution of pulse code modulation,
		Definition of quanta, Quantization, Delta modulation
3	Cathode ray oscilloscope	Introduction to display devices, Types of display
	Cathode ray tube	devices, Difference between analog and digital display
	Time base generator	devices, Importance of oscilloscope, Block diagram and
	Horizontal and vertical amplifier.	construction, Features, Functional parts, Principle of
	CRO probes	focusing an electron beam, Electrostatic focusing,
		Electrostatic deflection, Expression for deflection
		sensitivity, Need for a sweep voltage, Characteristics of
		a sweep waveform, Sweep wave form generator (saw
		tooth generator), Various sweep generators, Vertical
		amplifier features, Horizontal amplifier features, Need
		for horizontal amplifier, Construction, Functioning of a
		probe, Classification of probes, Direct reading probe,
		Circuit isolation and Detector probe
4	Applications of CRO	Introduction to lissajous patterns, Phase measurement,
	Measurement of Phase and frequency	Frequency measurement, Purpose of sampling
	Sampling Oscilloscope	oscilloscope, Advantages, Construction, Working
	Analog storage oscilloscope	principle, Importance of staircase waveform,
	Digital storage oscilloscope	Advantages of storage oscilloscopes over the ordinary
		oscilloscopes, Analog storage methods, Variable
		analog storage and digital storage assillance between
5	Digital Voltmeter	Introduction, Difference between analog voltmeter and
	Successive Approximation type	algital voltmeter, Classification of digital voltmeters,
	Ramp type	disadvantages. Construction, Warking principle, Advantages and
	Dual-slope Integration type	disadvantages, Construction, Working principle,
		Advantages and disadvantages.

6	Continuous balance type	Construction Working principle Advantages and
	Microprocessor based voltmeter	disadvantages
	Digital frequency meter	High frequency measurement,
	Digital phase meter	Construction Working principle Advantages and
		disadvantages.
7	Wave analyzer, Frequency selective	Application of Wave analyzers, Harmonic Analyzers,
	analyzers Heterodyne	Total Harmonic distortion, Spectrum analyzers, Basic
	Application of wave analyzers, Harmonic	spectrum analyzers, Spectra display
	distortion analyzer, Total Harmonic	Importance of wave analyzers and their working
	distortion	Importance of vector impedance meter
	Vector impedance meter	Construction and working principle Q- value
	Q-meter	Construction of Q-meter and working principle
8	Peak reading voltmeter	Difference between a dc instrument and an ac
	RMS Voltmeter	instrument, DC voltmeter - AC voltmeter
		Average responding voltmeter
		Peak responding voltmeter
		Need for measuring RMS value of voltage
		Block diagram & working principle
9	Classification of transducers	Definition of a transducer, Introduction to sensors
	Advantages of electrical transducers	Difference between a transducer and a sensor
	Characteristics and Choice of transducers	Types of transducers, Difference between electrical
	Resistive transducers	and mechanical transducers.
		Electrical transducers, Active, Passive, Examples for
		each. Advantages of one over the other Transducer
		selection conditions, Fundamental transducer
		parameters, Physical conditions, Ambient conditions
		Environmental conditions, Compatibility of the
		associated equipment, Construction and operation
		Classification, Potentiometers, Strain gauges
		Potentiometers. Construction, Working, Loaded
		potentiometer, Loading effect, Applications, Problems.
10	Inductive transducers	Construction, Working principle, Equivalent circuit,
	LVDT	Advantages and disadvantages, Applications, RVDT
	Synchro	Construction Working principle Definition,
	Capacitive transducer	Control type Synchro, Torque transmission type,
	Strain Gauge	Construction and working principle of each.
		Construction and operation, Measurement of liquid
		level. Frequency response Introduction to stress and
		strain. Quantities involved.
11	Gauge factor	Construction of strain gauges, Peizo resistive effect,
	Types of strain gauges	Derivation of gauge factor, problems, classification of
	i ypes of strain gauges	strain gauges, Bonded and unbounded metal strain
		gauges, Bonded metal foil type, Semiconductor type
1		

	Thermistors and thermocouples	Working principle of each. Features construction
		resistance-temperature Characteristics applications
12	Piezo electric transducer	Piezo electric effect.
	Photo voltaic cell	Properties. Construction and working principle
	Photo conductive cell	Derivation for voltage sensitivity and
	Photo diode	Charge sensitivity.
	Photo transistor	Advantages and disadvantages.
		Problems, Construction, Principle of operation,
		Applications, Construction, Principle of operation
		Applications
13	Measurement of strain	Strain gauge circuits, Construction of strain gauges
	Gauge sensitivity	Theory of strain gauges, Peizo resistive effect, Single
	Angular velocity measurement using	strain gauge bridge, working principle, Definition of gauge sensitivity. Derivation for gauge sensitivity. Half
	tachometers and digital meters	bridge, Full bridge, Problems, Introduction to
		tachometers, Classification of tachometers, Mechanical
		method of measurement, Digital method of measuring
		angular velocity.
14	LVDT accelerometer	Basic seismic transducer
	Force Measurement	LVDT accelerometer
	Torque measurement	Use of strain gauges in weight measurement
		Construction and Working principle
		Importance of torque measurement
		Torque transducers
		Strain gauge torque meters
		Inductive torque transducer
		digital methods
15	Temperature Measurement	Measurement of Temperature and Temperature,
	Pressure Measurement	compensation, Classification of Pressure various methods, Thermocouple Vacuum Gauge, Ionization

Vaccum Measurement	Gauge, Pirani Guage, flow measurement, Classification
Flow measurement using electromagnetic method, Hot wire anemometer Ultrasonic type, Liquid level measurement	of flow meters, electromagnetic flow meter, Construction, Working principle Advantages and disadvantages, level measurement, capacitance method

7.4.11 STUDENT SEMINAR TOPICS

- 1. Construction of Microcontroller Based Digital Voltmeter. International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Volume 3 Issue 1, January 2014 www.ijsr.net
- 2. Design and implement of the digital storage oscilloscope card based on VHDL, Electronic Measurement & Instruments (ICEMI), 2011 10th International Conference on (Volume:1)
- 3. Design of BCI Based Multi-information System to Restore Hand Motor Function for Stroke Patients, Page No.4924 4928, Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on
- "Ink-jet printed strain sensor on polyimide substrate," Electronics Technology (ISSE), Zlebic, C.; Kisic, M.; Blaz, N.; Menicanin, A.; Kojic, S.; Zivanov, L.; Damnjanovic, M., 2013 36th International Spring Seminar on, vol., no., pp.409,414, 8-12 May 2013
- 5. Improvement of Lock-in Electrical Bio-Impedance Analyzer for Implantable medical devices, Mart Min,

Page No.968, Vol. No.56, No.2, April 2007, IEEE Transactions on Instrumentation and Measurement.

- 6. A photonic crystal fibre sensor for pressure measurements, W. J. Bock, IEEE Transactions on Instrumentation Measurements, vol. 55, no.4, Aug 2006.
- 7 . Dangerous effects of moisture on dielectric strength and ageing of oil paper insulation, Ashok Yadav, Electrical India Oct 2006.
- 8. PC based temperature recording and monitoring system, D.Das, Instrumentation Society of India, June 2006.
- 9. On the development of a low-cost, transformer isolated voltage probe for different measurements, Instrumentation Society of India, March 2006.
- 10. Analog signal processing in an AC electromagnetic flowmeter, B.J.Polo, IEEE Transactions on instrumentation and measurements, vol. 51, no.4, Aug 2002.
- 11. Why do we care about measurement, Kim, R. Fowler, IEEE Instrumentation and Measurement, March 2004.

7.4.12 QUESTION BANK

UNIT-I

- 3. What is meant by error and explain dierent types of errors? (April 11)

4.	i. ii.	Discuss in detail about three categories of Systematic Errors.Explain with suitable examples. Distinguish between 'range' and 'span' of an instrument.	(April 11)
5.	i. ii.	Dene the following dynamic characteristics, i. Bandwidth ii. Dynamic range iii. Settling time iv. Speed of response v. Measurement lag vi. Time constant Determine whether the following errors are of random or systematic type. Justify your response	e. April 11)
6.	i. ii.	Explain the terms 'Sensitivity' and 'Resolution' of an instrument, with suitable example. Define 'dynamic error' and show how it differs with the type of input signal applied to a system	n. (Mav 10)
7.	i. ii.	What is meant by "dynamic response of an instrument"? What do you understand by span accuracy and point accuracy? Explain.	(May 10)
8.	i. Evn	Define 'repeatability' and 'reproducibility' and discuss why instruments should possess these haracteristics.	[av 10]
9. "n wi 10	naxim th nea	What is the phenomenon of hysteresics in measurement systems? Explain the terms um input hysteresis", "maximum output hysteresis", "dead zone", and t diagrams. Define Systematic error and explain the types of systematic errors?	"threshold", "Blacklash", (May 10) (May 09)
11	. i. each ii.	Define 'Drift', 'Threshold Value' and 'Dead-band' of a measuring system, with suitable examp Distinguish between 'Range' and 'Span' of an instrument.	ole for (May 09)
12 13	. i. ii. . i. ii.	 In how many stages, can any measuring process can be divided? Draw the block diagram and be the uniqueness of each stage, in terms of its functions. Distinguish between 'error? and 'correction' and show how they are usually expressed for an in ment. (May 09) How are the performance characteristics of an instrument, classified? Explain clearly the difference between Accuracy and Precision? 	ring out astru (May 09)
14	i. ii. iii. iii. iv.	Define the following Arithmetic mean Median Standard deviation Variance	(Sep 08)
15	.i. ii.	How the performance characteristics of an instrument are classified? (Sep Explain clearly the difference between Accuracy and Precision?	, Apr 08)
16	.	Draw the block diagram of the measuring system and explain the each stage with their function	1S. 7 06 05)

(Sep, Apr 08, 07, 06, 05)

- 17. i.Define Instrumentation and the importance of the Instrumentation systems (Sep 08, Apr 07)
 - ii. Explain the role of electronic circuits in the field of modern instrumentation.
 - iii. Distinguish a meter from an instrument and state the primary role of each.
- 18.i. What is meant by stability of a measuring system? Indicate which class of instruments are required to be more stable.

(Apr 08, 05)

- ii. Explain how the non linearity of a measuring system is defined and estimated.
- 19.i. Define passive and active transducers and give an example of each.
 - ii. Distinguish between static and dynamic characteristics of an instrument. (Apr 08, 05)
- 20. Define the following static characteristics with necessary examples and graph
 i. Accuracy
 - ii. Dead band
 - iii. Threshold
 - iv. Drift (Apr 08, 04)

i. Describe the various sources of errors encountered in a measuring system. (Apr 08)

- ii. What do you understand by the terms
 - a. Systematic errorsb. Instrumental errors.
- 22. Distinguish the important characteristics of instrument that are totally electrical and totally electronic in nature

(Apr 07, Sep, Apr 06)

23. Distinguish between systematic and random errors in a measurement and how they are usually minimized

(Apr 07)

- 24. i. What is meant by voltmeter sensitivity? Explain its relevance in circuit applications. What is meant by
 - loading eect? What circuit arrangement is done to avoid the same.
 - ii. It is desired to measure the voltage across the 100K? resistor in the circuit given below. Two voltmeters
 - are available for this measurement. Voltmeter 1 with a sensitivity of 1000?/V and voltmeter 2 with a sensitivity of 20,000?/V. Both meters are used on their 50V range. Calculate i) the reading of each meter ii) error in each reading, expressed as a percentage of the true value. (Sep 06)
- i. How do you explain accuracy? Give examples.
 ii. A voltmeter having a sensitivity of 1,000? /V, reads 80V on its 150V scale when connected across an unknown resistor in series with a milli ammeter. When mill- ammeter reads 4mA, calculate i. apparent

resistance of the unknown resistor,

- iii. actual resistance of the unknown resistor,
- iv. the error due to loading eect of the voltmeter.

(Sep 06)

- 26. i. Define dynamic error and show how it differs with the type of input singal applied to the system.
 ii. Explain the term fidelity of an instruement and show how it is usually expressed. (Apr 06)
- 27. i. a. Describe the international standard of mass and length.b. What are atomic standards for frequency and time?

	ii.	What are different standard test signals for studying the dynamic response of a syster suitable sketches.	n? Explain them with (Jul 05)
28.	i.	 Briefly explain the following transducer errors. a. Zero error b. Sensitivity error c. Nonconformity error d. Hysteresis error 	(Jul, Apr 05, 04)
	ii.	Briefly explain the classification of transducer based on the principle of transduction.	
29.	i. ii.	Explain systematic errors clearly with the help of examples. A resistor is measured by the voltmeter and ammeter method, the voltmeter reading is scale and the ammeter reading is 288.5mA on 500mA scale. Both meters guaranteed percent of full-scale reading. Calculate a. the indicated value of the resistor b. the limits within which you can guarantee the result.	to accurate within ± 1 (Apr 05)
30.	i. ii. iii. iv. vii.	Explain the following Accuracy Error Linearity Precision Discuss main differences between accuracy a (Apr 05)	and precision.
31.	i. ii.	Explain advantages and disadvantages of electrical transducers transducers What are the Digital Transducers explain	over mechanical (Jul 04, 03)
32.	i. ii. ii. iv.	Explain terms Positioning Linearity Threshold Range as applied to measuring instruments.	(Apr 04)
33.	i. ii.	For a transducer briefly explain the following . a. Input characteristics b. Output characteristics Define the following and explain a. International standard b. Working standard	(Apr 04)
34.	i. ii. iii.	Explain the following with examples Transducer Inverse Transducer Output (Apr 04)	Transducer
35.	i. ii.	Explain classification of Transducers. Explain general performance of sys Distinguish between static and dynamic characteristics of instruments.	stems (Apr 04)
36.	i. ii.	Briefly describe the different criteria for selection of transducer application Explain the differences between Primary and secondary transducers	for a particular (Apr 04)

- 37. What is meant by voltmeter sensitivity? Explain its relevance in circuit applications. What is meant by loading effect? What circuit arrangement is done to avoid the same? (Apr 04)
- 28. i. Explain systematic errors clearly with the help of examples.
 - ii. A resistor is measured by the voltmeter and ammeter method, the voltmeter reading is 125.4V on the 250V scale and the ammeter reading is 288.5mA on 500mA scale. Both meters guaranteed to accurate within \pm 1 percent of full-scale reading. Calculate (a) the indicated value of the resistor (b) the limits within which you can guarantee the result. (apr 04)
- 39. Explain the terms:
 - i. precision
 - ii. linearity
 - iii. percentage error and
 - iv. accuracy Define the terms: 1 : accuracy 2: precision 3: % error

(Apr 03)

- 40. Explain systematic errors clearly with the help of example.
- 41. How are random errors analysed? Explain with examples.
- 42. How do you explain accuracy? Give examples.
- 43. Classify errors and explain them.
- 44. Suggest methods to minimize and eliminate different types of errors.

UNIT-II

1.	i. ii.	Explain the common forms of periodic signals with their waveforms. Write the applications of PCM.	(May 12)
2.		Describe the process of obtaining discrete time signal from continuous time signal. Draw waveforms.	the necessary (April 11)
3.		Derive from fundamentals the expression representing a saw tooth wave.	(April 11)
4.	:	Describe pulse amplitude, pulse width and pulse position modulation techniques.	(April 11)
5.	i. ii.	Write short note on sampled data.	(April 11)
6.	i. ii.	What are sidebands of a modulated signal and explain their presence in AM and FM signals. Define distortion of a periodic signal and how is it estimated?	(May 10)
7.	i. ii.	Explain the rectangular, pulse and unit impulse function with its frequency spectrum of aperi Give the functions of rectangular wave and rectangular pulse train of periodic signal.	odic signal. (May 10)
8.		 Write short notes about the following spectra: a) Continuous wave signals. b) Amplitude modulation. c) Frequency modulation d) Pulse modulation. 	(May 10)
9.	i. ii	Define and distinguish between periodic and aperiodic signals with examples and necessary w	vave forms?

- ii. Define 'Laplace' and 'Fourier' transforms and indicate the conditions under which each is applicable. (May 10)
- 10. i. What are the differences between sampling process and pulse modulation?

	ii.	Describe the types of test signals by which physical systems are studied and analyzed for their dynam behavior? (May 10)	nic
11.		What is the process of modulation? Describe the techniques usually adopted. (May 09)	
12	.i. ii.	Define bandwidth of a signal and explain the ways in which signals are classified according bandwidth. Determine which of the following signals is periodic. If a signal is periodic determine its fundamental period. $x(t) = fsip(t/6) l^2$	to
	ii)	$x(t) = [\sin(t-70)]^2$ $x(t) = e^{j(nt-1)}$ (May 09)	
13.		What is the process of modulation? Describe the techniques usually adopted.(May 09)	
14.	i. ii.	Derive from fundamentals the expressions representing A rectangular pulse train a saw tooth wave. (May 09)	
15.	i. ii.	Explain about aperiodic signal with examples.(Sep 08)Compare periodic and aperiodic signals.	
16.	i. ii.	Write about analog and digital signals with illustrations?(Sep 08)Define all the standard test signals with suitable waveforms?	
17.	i. ii.	 Explain the spectra of a periodic rectangular pulse train for the following. a. Amplitude b. Phase spectra when time origin coincides with centre of pulse. c. Phase spectra with pulse starting at t=0. Define line spectra. 	
18.		Explain how angle modulation of a signal is done. Distinguish between angle and Phasemodulation. (Apr 08)	
19.	i. ii.	Explain the common forms of periodic signals with their waveforms.(Apr 08)What is complex form representation of periodic signal?	
20.		Describe the process of modulation and the techniques usually adopted (Apr 08, 07, Sep 06)	
21.		Derive the expression for a frequency-modulated signal and show how the number of sidebands increases with modulation index. (Apr 08, 06)	es
22.	i. ii.	 Briefly explain the following processes as applied to pulse code modulation a. Quantization process b. Encoding process Describe the following modulation processes a. Pulse amplitude modulation 	
		b. Pulse frequency modulation (Apr 08, 04, 03)	
23.		Define band width of a signal and explain the way signals are classified according the their band width.	
24.		Distinguish between analog modulation and digital modulation and explain the situations under which ea is preferred. (Apr 08, 05)	ch
25.		Explain the types of test signals used for determination of dynamic characteristics. (Sep 06, Apr 05)	

- 26. Explain the techniques of pulse-time modulation and pulse code modulation and their relative merits. (Apr 05)
- 27. Briefly explain the following systems with examples.
 - i. Underdamped system
 - ii. Overdamped system
 - iii. Critically damped system.
- 28. i. Derive the expression for time response of first order system subjected to step input.
 - ii. A RC circuit consists of a capacitor of 1μ F in series with a resistor of 1KW. A DC voltage of 50V is suddenly applied across the circuit. Calculate the value of voltage after 10 mSecs. (Apr 05)
- 29. i. Distinguish between deterministic and random signals. Give suitable examplesii. Describe the procedure used to determine whether the sum of two periodic signals is periodic or not.
 - (Apr 04, 03)
- 30. i. Derive the expression for time response of first order system subjected to Ramp input
 - ii. A first order instrument is having time constant of 1 sec. find the response of this instrument subjected to the following inputs
 - a. 2Sin(3t)b. 2Sin(30t).

(Apr 04)

(Apr 03)

(Apr 05)

- 31. i. Explain the following types of response with suitable graphs: (Apr 04)
 a. Steady state response
 b. Transient response
 - ii. Derive the expression for the time response of second order system subjected to step input
- 32. i. Derive the frequency and phase responses of second order systems subjected to sinusoidal inputs
 - ii. Explain the correlation between time domain and frequency domain responses of second order systems
 - (Apr 04)
- 33. i. Describe the process of obtaining Discrete time signal from continuous time signal. Draw the necessary plots (Apr 03)
 - ii. What are the major classification of signals . Explain them in detail with suitable sketches
- 34. i. Describe the following signals with suitable plots:
 a. Continuous time periodic signals
 b. Aperiodic signals
 ii. Explain how sampling can be done using an impulse function?
- 35. Write short notes on
 - i. Continuous Wave Signal
 - ii. Amplitude Modulation
- 36. Explain the significance of demodulation
- 37. Explain the significance of standard test signals
- 38. Explain significance of modulation and its types
- 39. i. Distinguish between periodic and a periodic signals and give examples for eachii. Derive from fundamentals the expression representing a rectangular wave by Fouries series
- 40. Distinguish between the deterministic and non-deterministic signals

UNIT-III

1.	I. ii.	What is the operating voltage of a CRT arranged so that the deection plates are nearly at List the advantages of conventional storage oscilloscope and digital storage oscilloscope	ground potential? .(May 12)
2.		Draw and explain dierent parts of a CRT.	(April 11)
3.		Explain with a neat block diagram of a horizontal and vertical deection system.	(April 11)
4	i. ii.	With block diagram explain Delay line. If a digitizing oscilloscope is to have a 16-bit resolution in both the horizontal and vertice display transients at a rate of 1*10-6 sec per division for a display of 10 divisions, what is required for the input of A/D converter?	al axis and is to the speed (April 11)
5.	i. ii.	Explain the dierent types of graticules used in a CRO. Describe their advantages and disa What precautions must be taken when using a sampling oscilloscope?	advantages. (April 11)
6.	i. ii.	Write notes on: Magnetic deflection of electron beam in a CRT. Deflection sensitivity.	(May 10)
7.	i. ii.	What are Lissajous patterns? How can they be created? Explain. Write the construction and working of a CRT using Halftone storage Techniques.	(May 10)
8.	i. ii.	Why is an attenuator probe used? In a cathode ray tube the distance between the deflecting plates is 1.5cm, the length of the is 4.5cm and the distance of the screen from the centre of the deflecting plates is 33cm. voltage supply is 300volt, calculate deflecting sensitivity of the tube.	the deflecting plates If the accelerating (May 10)
9.	i. ii.	Derive an expression for the vertical deflection of an electron beam in the CRT. The deflection sensitivity of an oscilloscope is 35v/cm. If the distance from deflecting screen is 16cm, length of the deflection plate is 2.5cm and the distance between the of 1.2cm. What is the acceleration anode voltage?	ion plates to CRT leflecting plates is (May 10)
10.		What is Synchronization? What are the different methods by which it can be accomplis	hed?(May 09)
11.		Define deflection sensitivity and deflection factor of a cathode ray tube.	(May 09)
12.	i. ii	Draw the block diagram of a general purpose CRO and explain the functions of the follow Intensity	ving controls:
	iii.	Horizontal and Vertical positioning.	(May 09)
13.		Explain the operation of a CRO with a neat block diagram. (S	ep 08, Nov 04)
14.		Explain in detail about the vertical deflection system. (Se	ep 08, May 04)
15.		Explain principle and operation of sampling oscilloscope with neat block di Apr 03)	agram(Sep 08,
16.	i. ii.	What do you mean by multi trace with respect to oscilloscopes With a neat block diagram explain the each block of a dual-trace oscillosco 03)	pe(Sep 08, Apr

- What is digital frequency meter? Explain its principle of operation, construction and working. **(Sep, Apr 08)** Describe in detail the construction and working of an analog type storage oscilloscope. 17.
- (Sep 08) 18.

- 19. i. Derive an expression for electrostatic deflection sensitivity of a CRT.
 - ii. What are the applications of CRO? Explain the procedure for the measurement of frequency and phase using Lissajous figures. (Sep 08, Apr 08, 03)
- 20. What are the major blocks of oscilloscope, and what does each do? (Apr 08)
- 21. What are the major components of a CRT? (Apr 08)
- 22. i. What are the operating voltages of a CRT arranged so that the deflection plates are nearly ground potential? (Apr 08)
 - ii. What is the velcoity of electrons that have been accelerated through a potential of 2000V?
- 23. Discuss in detail, electrostatic deflection of the electron beam. (Apr 08)
- 24. i. Write the important specifications of CRO for instrumentation applications. What selection factors are necessary for selecting a CRO.
 - Calculate the velocity of an electron beam in an oscilloscope if the voltage applied to its vertical deflection plates is 2000v. Also calculate the cut off frequency if the maximum transit time is 1/4th of a cycle. The length of horizontal plates is 50mm. (Apr 08)
- 25. i. An electro statically deflected cathode ray tube has plane parallel deflecting plates which are 2.5cm long and 0.5cm apart, and the distance from their centre to the screen is 20cm. The electron beam is accelerated by a potential difference of 2500v and is projected centrally between the plates. Calculate the deflecting voltage required to cause the beam to strike a deflecting voltage and find the corresponding deflection of the screen.
 - ii. What is the relationship between the period of a waveform and its frequency? How is an oscilloscope used to determine frequency? (Apr 08, 07, 05)
- 26. A lissajous pattern on the oscilloscope is stationary and has 6 vertical maximum values and five horizontal maximum values. The frequency of the horizontal input is 1500 Hz. Determine the frequency of vertical input. (Apr 07)
- 27. i.How does the digital storage oscilloscope different from the conventional storage oscilloscope using a storage cathode ray tube.
 - ii. List the advantages of each.

(Sep 06)

(Sep 06)

- 28. i. Why is an attenuator probe used?
 - ii. In a cathode ray tube the distance between the deflecting plates is 1cm, the length of the deflecting plates is 4.5 cm and the distance of the screen from the centre of the deflecting plates is 33cm. If the accelerating voltage supply is 300 volt, calculate deflecting sensitivity of the tube. (Sep 06)
- 29. i. Define deflection sensitivity and deflection factor of a cothode ray tube.

ii. An electrically deflected CRT has a final anode voltage of 2000v and parallel deflecting plates 1.5 cm long and 5mm apart. If the screen is 50 cm from the centre of deflecting plates, find

- a. Beam speed
- b. The deflection sensitivity
- c. The deflection factor of the tube.
- 30. Derive the equation D=LIdED/2dEa with respect to the concept of electrostatic deflection of a cathode ray oscilloscope, where D=deflection of electron beam on the screen in Y direction; mtr, L=distance between screen and the centre of deflectign plates; mtrs Id =length of the deflecting plates, Ed =potential between deflecinting plates, d=distance between deflecting plates, Ea =voltage of the pre-accelerating anode. (Sep 06)

- 31. i. Derive the equations for Resistive voltage divider and capacitive voltage divider of compensated attenuator.
 - ii. Explain the method of finding phase, frequency relationship of two waveforms using Lissajous figures.
 - iii. What are the advantages of using an active probe. (Sep 06)
- 32. i. Explain the two types of analog storage of oscilloscopes?
 - ii. What are the dierences between Digital storage oscilloscope and conventional storage oscilloscope.
 - iii. A sampling oscilloscope is being used to observe a 400 MHz sine wave. A sampling pulse occurs every 3 ns. Draw five cycles of the 400 MHz signal and place a dot at the sampled point on each of the five cycles.
 (Sep 06)
- 33. Explain the function of each of the following CRO controls
 - i. Focus
 - ii. Z-Axis Modulation
 - iii. Astigmatism.
- 34. i. Explain the working of storage CRO.ii. Explain the following termsa. Horizontal position
 - b. External horizontal input.
- 35. Explain with a neat block diagram of digital storage oscilloscope
- 36. i. How does the sampling oscilloscope in crease the apparaent frequency response of an oscilloscope.
 - ii. Voltage E1 is applied to the horizontal input and E2 to the vertical input of a CRO. E1 and E2 have same frequency. The trace on the screen is an ellipse. The sope of major axis is negative. The maximum vertical value is 3 divisions and the point where the ellipse crosses the vertical axis is 2.6

divisions. the ellipse is symmetrical about horizontal and vertical axis. Determine the possible phase angle E2 with respect to E1 (Apr 06)

- 37. i. Write short notes on post deflection acceler4ation with respect to oscilloscope tube
 - ii. What is the minimum distance, L, that will alow full deflection of 4cm at the oscilloscope screen with a deflection factor of 100v/cm and with an accelerating potential of 2000V? (Apr 06)
- 38. i. What effect does inceasing the writing rate of an oscilloscope by increasing the accelerating potential have ont he deflection sensitivity.
 - ii. How much voltage is required across two deflection plates separated by 1cm to dflect an electron beam 1 degree. If the effective length of the deflection plates is 2cm and the accelerating potential is 1000 volts? (Apr 06)
- 39. i. Compare the output voltage of the voltage divider attenuator (Compensated Attenuator) for a dc voltage and a 10 MHZ ac signal.
 - ii. Write short notes on delay line construction techniques.
 - iii. How do we measure voltage and time using CRO?
- 40. i. Draw the neat sketch of triggered sweep circuit and explain it. Draw the trigger pulse and sweep waveforms.
 - ii. Draw the block diagram of a dual beam oscilloscope and explain its working. (Apr 06)
- 41. i. Draw the neat block diagram of a general purpose oscilloscope and explain its basic operation.
 - ii. Explain the following terms:
 - a. Fluorescence
 - b. Phosphorescence c. Persistence.

(Apr 06)

(Apr 06)

(Sep 06)

(Sep 06)

(Apr 06)

42. With a neat block diagram, explain each block of a heterodyne wave analyzer. (Apr 05) 43. Describe the different types of phosphorous materials used in a CRO and list their applications?(Apr 05) The input attenuator in the vertical amplifier of a general purpose CRO is generally followed by an emitter 44. follower or cathode follower circuit. Suggest three possible reasons for using this circuit. (Apr 05) 45. Describe the following: Sources of Synchronisation. i. ii. Blanking circuit iii. Focus control (Apr 05) 46. (Nov 04) Derive an expression for deflection sensitivity and deflection factor of a CRT. 47. Explain about CRT screen. (Nov 04) 48. Explain the difference between the internal and external graticules. (May 04) 49. Write short notes on synchronization of the sweep. (May 04) 50. i. Draw the block diagram of a general purpose CRO and explain the function of the following control a. intensity b. focus c. horizontal and vertical positioning d. synchronization. ii. Explain the function of a time base generator in a CRO. (Nov 03) 51. i. Explain different type of graticules used in a CRO. Describe their advantage and disadvantage. ii. How does the sampling oscilloscope increase apparent frequency response of an oscilloscope? iii. What is the relationship between the period of a waveform and its frequency. How is an oscilloscope used to determine frequency? (Nov 03) 52. i. How much voltage is required across two deflection plates separated by 1 cm, to deflect an electron beam 10 if the effective length of the deflection plate is 2 cm and the accelerating potential is 1000 V. ii. What is oscilloscope probe compensation? How is this adjusted? What effect are noted when the compensation is not correctly adjusted? What are the advantage of using an active voltage probe? iii. State the kind of application where an x-y recorder is more suitable than the common form of single pen recorder. (Nov 03) 53. i. Describe the function of attenuators in CRO. ii. Describe the phenomen of synchronization of vertical input signal to its sweep generator. iii. Explain in detail the vertical and horizontal amplifiers used in CRO. (Nov 03) 54. i. Explain in detail the construction and working of sampling oscilloscope. ii. Explain the principle of secondary emission. (Nov 03) 55. With neat block diagram explain the working of generalpurpose oscilloscope. (Apr 03) 56. i. Describe the functionality of a time base generator in a CRO. ii. Describe the different parts of a CRT. (Apr 03) 57. i. Describe in detail the construction and working of storage oscilloscope. ii. Explain about direct reading probe, circuit isolation probe, detector probes. (Apr 03) 58. i. Derive an expression for magnetic deflection sensitivity of a CRT. ii. What are the materials used for CRT? Describe its characteristics. (Apr 03)

- 59. i. Draw the block diagram of a CRO and explain the function of each block. ii. Describe the applications of a CRO. (Apr 03) 60. Why electronic circuits in oscilloscope causes a certain amount of time delay in transmission signal voltages to deflection plates (Apr 03) 61. With neat circuit diagram explain the operation of delay of vertical signal which allows horizontal sweep to start prior to vertical deflection (Apr 03) How is vertical axis of oscilloscope deflected . How does it differ from horizontal axis 62. (Apr 03) 63. How phase frequency and phase angle are measured using an oscilloscope (Apr 03) 64. How does Digital storage oscilloscope differ from conventional storage oscilloscope. (Apr 03) 65. Distinguish between dual beam and dual trace CRO'S with help of neat Block diagram. What are the advantages and disadvantages (Apr 03) What materials used in screens of CRO'S, what are their characteristic features. (Apr 03) 66. 67. Briefly explain about the characteristics of commonly used phosphors. (Apr 03) 68. Mention advantages of general purpose oscilloscope. (Apr 03) 69. How does alternate sweep compared with chopped sweep? When would one method be chosen over the other. (Apr 03) 70. Explain with a neat block diagram for time interval measurement and explain each block and its functionalities. (Apr 03) 71. Explain with a neat block diagram of a horizontal deflection system. (Apr 03) 72. i. Explain the following features of an analog type storage oscilloscope (Apr 03) a. Bistable persistence storage b. bistable storage
 - c. fast storage
 - ii. Discuss the advantages and disadvantages of analog and digital type of oscilloscopes

UNIT-IV

- i. Write the general specications of digital voltmeter.
 ii. With timing diagram showing voltage to time conversion, discuss Ramp type DVM. (May 12)
 2. i. With a neat block diagram explain the working of servo balancing potentiometer type digital voltmeter.
- ii. Describe the term overrange and half digit. (April 11)
 3. Describe with the help of suitable circuit diagrams, how the following types of measurements are carried
- out using a digital frequency meter.
 - i. Single and multiple period measurements.
 - ii. Time interval measurements.

	iii.	Multiple ratio measurements.	(April 11)
	4. ii.	i. With a neat block diagram, explain the successive approximation digital voltmeter. The lowest range on a 4 1=2 digit digital voltmeter is 10 mV full scale. What is the sensitivity	of this
5	:	meter?	(April 11)
5.	ii.	Write any four advantages and disadvantages of Linear Ramp technique.	(May 10)
6.	i. ii.	Explain working principle of Successive approximation type Digital Voltmeter? Mention advantages and disadvantages of successive approximation type DVM?	(May 10)
7.	i. ii.	Explain the Phase Meter principles employed in measuring equipment? Draw and explain Digital phase meter?	(May 10)
8.	i. ii.	Explain with a neat block diagram the working of a dual slope digital voltmeter. A dual slope integrating type A/D converter has an integrating capacitor of 0.1 microfarad and of 100 kohms. If the reference voltage is 2v, and the output of an integrator is not to exceed 10 maximum time the reference voltage can be integrated?	l a resistance)v, what is the (May
10)		
9.		Explain with neat circuit diagram the working of the linear ramp type DVM.	(May 09)
10	 ii.	i. Explain the principle and working of peak reading voltmeter with a block diagram. Explain the two modes of operation of a vector impedance meter.	(May 09)
11 (M	Iay 09	What are the different types of Digital voltmeters? Explain them briefly with neat sketches. 9)	
12		Draw and explain the circuit of a digital frequency meter. What are the different methods used frequency determination?	for high (May 09)
13	•	List different types of DVM and explain any one of them with neat sketch?	(Sep 08)
14	.i. ii.	On what basis digital voltmeters are classified? Explain with circuit diagram, the principle of operation of DVM.	(Sep 08)
15	ii.	i. Explain the basic circuit of a digital frequency meter Explain time base selector with a neat sketch (S	ep 08, 06)
16 wo	i. orkin ii.	 i. Des i. Des i. g of an integrating type voltmeter. A 4 1/2 digit voltmeter is used for voltage measurements. a. Find its resolution. b. How would 12.98 V be displayed on 10V range? c. How would 0.6973 be displayed on 1 V range? d. How would 0.6973 be displayed on 10 V range? 	scribe the 03)
17 18	'. i. ii. iii. 8.	A 3 1/2 digit voltmeter is used for measuring voltage. Find its resolution. How would a voltage of 14.53 V be displayed on 10V range? How would a reading of 14.53 V be displaced on 100 (Sep 08, Apr 03) What is a digital voltmeter? Discuss about ramp type DVM with a neat diagram.	V range? .(Sep 08)
19).	Explain the basic principle of digital frequency measurement.	(Sep 08)
20		Define deflection sensitivity and deflection factor of a cathode ray tube.	(Apr 08)

- 21. On what basis digital voltmeters are classified and explain any two non-integrating type digital voltmeters. (Apr 08)
- 22. i. Explain the principle and working of peak reading voltmeter with a neat block diagram. (Apr 08)
 ii. A coil of unknown impedance is connected in series with a capacitor of 224μF and an ammeter of negligible impedance is connected to a variable frequency of constant voltage and negligible impedance. The frequency was adjusted both above and below the resonance frequency till the reading of the ammeter was reduced to 70.7% of its value at resonance. This occurred at the frequencies of 876 and 892 kHz. Determine effective resistance, inductance and Q of the coil.
- 23. With a neat block diagram explain the microprocessor based ramp type digital voltmeter (Apr 08, Sep, Apr 06)
- 24. i. Explain in detail about integrating type DVM. (Apr 08)ii. Explain the successive approximation conversion techniques.

25. Explain with a neat circuit diagram of a RMS voltmeter. (Apr 07, Sep 06)

- 26. i. Explain with a neat block diagram of a dual slope digital voltmeter
 - ii. A dual slope integrating type of A/D converter has an integrating capacitor of 0.1 microfarad and a resistance of 100k. ohms. If the reference voltage is 2v, and the output of an integrator is not to exceed 10v, what is the maximum time the reference voltage can be integrated. (Sep, Apr 06)
- 27. i. Explain about each block of DVM and mention advantages of them.
 ii. Explain the bridge type of thermocouple arrangement and mention its applications. (Sep 06)
- 28. What are the various methods of measuring distortion? With the help of neat diagrams explain the measurement techniques. (Sep 06)
- 29. Write short notes on:
 - i. frequency synthesizer
 - ii. Zero crossing detectors
 - iii. Frequency converters.
- 30. i. Explain the working principle of a Dual slope integrator type of DVM with the help of neat block diagram.ii. Explain the importance of thermocouples in the construction of true RMS type of voltmeter. (Apr 05)

(Sep 06)

(Apr 06)

- 31. Write short notes on:
 - i. Digital phase angle meter
 - ii. Vector impedance voltmeter
- 32. i. What is digital frequency meter? Draw the basic circuit of a digital frequency meter. (Apr 06)ii. What is time base? Why is it needed? Draw the circuit of a time base selector and explain.
- 33. i. With a neat block diagram explain the potentiometric type digital voltmeter. (Apr 05) ii. The lowest range on a 4 1/2 digit digital voltmeter is 10mv full scale. What is the sensitivity of this meter
- 34. i. A $3\frac{1}{2}$ digit voltmeter is used for measuring voltage.
 - a. Find its resolution.
 - b. How would a voltage of 14.53 V be displayed on 10V range?
 - c. How would a reading of 14.53 V be displaced on 100V range?
 - ii. Draw and explain the block diagram of storage oscilloscope. (Apr 05)
- 35. i. Explain the functioning of a ramp type digital voltmeter. (Apr 05, 04)
 ii. Gating periods of 1 ms, 10 ms 100 ms 1 s and 10 s are provided on a digital counter-time-frequency meter having a 4 digit display. When a gating period is used a reading of 0095

is obtained. What is the likely value of frequency? What steps should be taken to obtain most accurate result?

- 36. i. Describe the working of an integrating type voltmeter.
 - ii. A 4 ¹/₂ Digit voltmeter is used for voltage measurements.
 - a Find its resolution.
 - b. How would 12.98 V be displayed on 10V range?
 - c. How would 0.6973 be displayed on 1V range?
 - d. How would 0.6973 be displayed on 10 V range? (Apr 05)
- 37. Explain the different methods used for measurement of RMS values of Voltages. (Apr 05)
- 38. i. What are the different types of digital voltmeters? Explain each of them briefly.(Apr 05)
 ii. The lowest range on a 4 ¹/₂ digit DVM is 10 mV full scales. What is sensitivity of this meter?
- 39. i. Explain the principles of frequency and time measurements.
 ii. Explain the operation of a simple frequency counter together with waveforms. (Nov 04)
- 40. Draw and explain circuit of digital frequency meter. What are the different methods used for high frequency determination .Explain each of them briefly (Apr 04)
- 41. i. Expain functioning of digital phase frequency meterii. Describe the working of successive approximation type DVM.(Apr 04)
- 42. i. Draw and explain vector impedance meterii. Explain the principles of Peak reading and RMS voltmeter (Apr 04)
- 43. i. Explain the following terms as applied to digital displays:
 - a. Resolution
 - b. Difference between 3 digit and 4 digit displays
 - c. Sensitivity of digital meters
 - d. Accuracy specifications of digital meters.
 - ii. Gating periods of 1 ms, 10 ms, 100 ms, 1 sand 10 s are provided on a digital counter-time-frequency meter having a 3 digit display. A gating period of 10 ms is selected to measure an unknown frequency and reading of 034 is obtained. What is the likely value of frequency? What steps to be taken

a. to clock the validity of the result; b. to obtain a more accurate result? (Apr 04)

44. i. Explain the functioning of a potentiometer type digital voltmeter.

ii. A 31/2 digit of DVM has an accuracy specification of:t 0.5 percent of reading +/-digit.
 a. What is the possible error in volt, when the instrument is reading 5.00 V on the 10 V range?

b. What is the possible error in volt, when reading 0.1 V on the 10 V range? (Apr 04)

- 45. i. What are the different types of digital voltmeters? Explain each of them briefly. (Apr 04) ii. The lowest range on a 4t digit DVM is 10 mV full scales. What is sensitivity of this meter?
- 46. i. Describe the working of an integrating type voltmeter. ii $A = \frac{1}{2} \frac{1}{2}$
 - ii. A 4 1/2 digit voltmeter is used for voltage measurements. (i) Find its resolution. (ii) How would 12.98 V be displayed on 10V range? (iii) How would 0.6973 be displayed on 1 V range? (iv) How would 0.6973 be displayed on 10 V range? (Apr 04)
- 47. i. Explain the principles of frequency and time measurements.
 ii. Explain the operation of a simple frequency counter together with waveforms. (Apr 04)

48.	i. ii.	What are the different types of extending frequency range of a frequency counter? Explain any two methods generally used to extend the frequency range of a frequency counter	r. (Apr 04)
49.	i. ii.	Distinguish between time and phase measurements. Explain the operation of a very low frequency comparator system?	(Apr 04)
50.		Explain the functioning of successive approximation type and potentiometric type of digital v	oltmeters. (Nov 03)
51.		Explain with help of suitable diagrams the functioning of ramp type and integrating type digi	tal voltmeter. (Nov 03)
52.	i. ii.	Explain in detail about continuous balance type digital voltmeter. Describe with the help of suitable block diagram how the following type of measurements a time interval and low frequency measurement	are carried out (Nov 03)
53.	i. ii.	What are the design considerations of digital voltmeters. Explain the principle of thermo couple voltmeter with diagrams	(Apr 03)
54.	i. ii.	Explain the functioning of digital phase angle meter. Describe the working of the successive approximation type DVM.	(Apr 03)

UNIT-V

1.	i. ii.	With neat circuit diagram explain a peak reading voltmeter. List out characteristics of frequency selective wave analyzer.	(May 12)
2.	i. ii.	With block diagram explain Harmonic distortion analyzer employing BridgeT- network. Explain the principle and working of true RMS voltmeter with block diagram.	(April 11)
3.		Explain the principle and operation of vector impedance meter with a neat block diagram.	(April 11)
4.	i. ii.	With a neat block diagram explain the working of a heterodyne wave analyzer. Explain the dierences between peak reading and RMS voltmeters.	(April 11)
5.	i. ii.	Explain the principle and operation of Inter Modulation Distortion analyzer with block diagra Explain the phase angle measurement with vector impedance meter.	am. (May 10)
6.	i. ii.	Explain the principle and working of peak reading voltmeter with a block diagram. Explain the two modes of operation of a vector impedance meter.	(May 10)

- 7. i. Explain the phase angle measurement with vector impedance meter.
 - ii. The self capacitance of coil is measured by the Q meter. The circuit is set in to resonance at 2 MHz and the tuning capacitor is of the value 460pF. The frequency is adjusted to 4 MHz and the resonance conditions are obtained by tuning the capacitor at 100pF. Calculate the value of self capacitance of the coil. (May 10)
- 8. i. What is the spectrum of a signal? Explain with various examples.
 - ii. A coil of unknown impedance is connected in series with a capacitor of 224¹/₄F and an ammeter of negligible impedance is connected to a variable frequency of constant voltage and negligible impedance. The frequency was adjusted both above and below the resonance frequency till the reading of the ammeter was reduced to70.7% of its value at resonance. This occurred at the frequencies of 876 and 892 kHz. Determine effective resistance, inductance and Q of the coil. (May 09)
- 9. i. What is a Q-Factor? Explain hoe Q-Factor is measmed?Give the working principle of the meter.
 - ii. Tests using a Q meter on a radio tuning coil to find its self capacitance gave the following results.

		 i. With the radio coil connected normally, the resonance was obtained at 1 MHz with tuning cator set at 80 pF. ii. With the standard inductor connected in place of the radio coil, the resonance was obtained at MHz. and this condition was not altered when the radio coil was connected in parallel with the standard inductor.Calculate the self-capacitance of the radio coil. (Ma 	apaci 3 y 09)
10.		Explain the principle and operation of vector impedance meter with a neat block diagram. (Ma	y 09)
11.	i. ii. iii.	What is a wave analyzer? Mention its significance in measurement system.(SeExplain the working of a Frequency selective wave analyzer with a neat block diagram.Mention few applications of heterodyne wave analyzers.	p 08)
12.	i. ii.	What is harmonic distortion? What are the types of the distortion? Discuss them. (Se A capacitor of capacitance 245 μ F produces resonance at angular frequency of 5 x 10 ⁶ rad/s, capacitor of capacitance 50 pF produces resonance with the second harmonic of this frequency. Of the inductance and the self capacitance of the coil.	p 08) while a Calculate
13.	i. ii.	Explain the working of a heterodyne wave analyzer with a neat block diagram. (Sep Explain the principle and operation of basic spectrum analyzer with a neat block diagram.	p 08)
14.	i. ii.	Explain the principle and working of true RMS voltmeter with a block diagram. (Ap. What are the differences between peak reading and RMS voltmeters.	r 08)
15.	i. ii.	Mention a few applications of heterodyne wave analyzers. (Ap Explain the principle and operation of basic spectrum analyzer with a neat block diagram.	r 08)
16.	i. ii.	Explain the working of a Frequency selective wave analyzer with a neat block diagram. (Ap What is harmonic distortion? What are the types of the distortion? Discuss them.	r 08)
17.		What do you mean by harmonic distortion and explain anyone method for measur (Apr 08, 05)	ring it.
18.		Explain in detail about spectrum Analyzers used for High frequency. (Apr 08,	05)
19.		Explain with an appropriate circuit for measurement of low impedance component with Q meter. (A	Apr 07)
20.		For measurement of small values of capacitances, a 60Mhz signal source is to be used in a cap meter. What value of series resistance is required if the phase shift is to kept below 507 degrees scale capacitance readings of 1,10 and 100pf. (Ap	acitance for full r 07)
21.	i. ii.	What are the sources of error in the measurement of Q of a coil. How are they taken care of ? A coil with a resistance of 0.1 ohm is connected in the" direct measurement" mode. Resonance when the oscillator frequency is 40 MHz and the value of capacitor is 135 pF. Calculate the per error introduced in the calculated value of Q by the 0.02 ohm insertion resistance. (Sep	e occurs rcentage p 06)
22.	i. ii.	What are the problems associated with grounding? How are they handled?Explain how can a Q meter be used for the measurement of stray capacitance?(Mag	y 06)
23.	i. ii.	Draw the block diagram of a spectrum analyzer of the swept-receiver design and explain it. Discuss the applications of Spectrum analyzer. (Mag	y 06)
24.	i. ii.	Describe the basic circuit of spectrum Analyzer. (Jul Explain how the spectrum of the following is displayed. a. continuous wave s/l b. AM signal c. FM	05)

d. Pulse modulates signal.

25.		With a neat sketch explain the operation of RF vector Impedance meter.	(Apr 05)
26.		Draw the block diagram of a spectrum analyzer of the swept-receiver design and explain it.	(Apr 05)
27.		Discuss the applications of Spectrum analyzer.	(Apr 05)
28.	i. ii. iii.	Describe basic circuit of spectrum analyzer .Explain how the spectra of for displayed . Continuous wave signals Amplitude modulated signals . Frequency modulated signals	ollowing are (Apr 04)
29.	i. ii.	Describe the engineering applications of wave analysers Explain the different types distortions caused by amplifiers	(Apr 04)
30.		Describe the circuits and working of wave analysers used for audio free megahertz ranges.	equency and
31.	i. ii.	Draw the circuit of a basic Q-meter and explain its principle of operation using a vector dia Discuss the "Direct- connection" technique of using Q-meter.	agram (Apr 04)
32.		Describe the basic circuit of a spectrum analyzer. Explain how the spectra of t are displayed (a) continuous wave signals (b) amplitude modulated signals (c modulated signal. (Apr 04)	he following c) Frequency
33.	i.	Describe the measurement of the following using a Q meter	
	::	(i) Q factor (ii) inductance (iii) effective resistance (iv) self capacitance(v) bandwidth.	a is tunned to

- ii. A circuit consisting of a coil, a resistance and a variable capacitor connected in series is tunned to resonance using a Q meter. If the frequency is 500 KHz, the resistance 0.5 Ù and the variable capacitor set to 350 PF. Calculate the effective inductance and resistance of the coil, if the Q meter indicates 90.(Nov 03)
- 4. i. Describe the circuit and working of a Q meter. Describe its application.
 - ii. Describe how corrections for shunt resistance and distributed capacitance are applied when measuring Q factor of a coil with a Q meter. (Nov 03)
- 35. Explain in detail the construction and working of a spectrum analyzer. State its application. (Nov 03)
- 36. Describe with the help of a suitable block diagram, how the following type of measurements are carried out.
 - i. Single and multiple period measurements.
 - ii. Time interval measurements.
- 37. Describe the circuits and working of wave analysers used for audio frequency and mega hertz ranges (Apr 03)
- 38. Describe the circuit and working of Q meter . Describe its applications (Apr 03)
- 39. Describe the basic circuit of a spectrum analyzer. Explain how the spectra of the following are displayed
 - i. Continuous wave signals
 - ii. Amplitude modulated signals
 - iii. Frequency

modulated

signal.

(Apr 03)

(Nov 03)

40.		Describe the engineering applications of wave analysers. Explain variou distortions caused by amplifier	s types o (Apr 03)	f
41.	i. ii.	Explain how high impedance components can be measured using Q-meter. Explain the working principle of Maxwell bridge circuit for the measurement of inductance.	(Apr 03)	
42.	i. ii.	Explain the principle of operation of Q-meter with a block diagram. Explain the working of distortion factor meter.	(Apr 03)	
43.	i. ii.	Explain the procedure for the measurement of delay, time and phase. Write brief notes on frequency synthesizer.	(Apr 03)	
44.	i. ii.	What are the applications of spectrum analyzer. Explain with a neat diagram the principle of storage oscilloscope.	(Apr 03)	
45.	i. ii.	Explain the principle of operators of spectrum analyzer for higher frequencies. Classify various transducers and mention the applications of each.	(Apr 03)	

46. i. Explain the principle of distortion factor meter with necessary diagram.

ii. Explain how the distributed capacitance can be measured using Q-meter. Calculate the distributed capacitance for C1 = 460pF and C2 = 100pF at 2MHz and 4 MHz respectively in the first and second measurement. (Apr 03)

UNIT-VI

1.		A strain gauge bridge has one arm as strain gauge with a gauge factor of 2.2. The resistance gauge and other arms is 200. Find the bridge output voltage (with output open circuited voltage of 3 V when the strain gauge is subjected to 600 strain.	value of strain l) for a supply (May 12)
2.	i. ii.	What is dierence between active and passive transducers? Explain. What is load cell? Where is it used?	(April 11)
3.	i.	With a neat sketch explain the working of Pirani gauge.	
	ii.	With the diagram explain ow direction measurement using double wire arrangement.	(April 11)
4.	i.	What is load cell? Explain the working of a load cell strain gauge bridge.	
	ii.	A mild steel shaft is used to connect a motor drive to a constant load torque. A foil strain gau resistance of 120 and a gauge factor 2 is mounted on a shaft with its active axis at angle of 45 the axis of the shaft. The shear modules of steel is 80 GN/m2. The shaft radius is 15 mm and	ige having a 5 degrees to the
		change in strain gauge resistance due to the load is 0.24. Find load torque.	(April 11)
5.	i.	Explain the working principle of potentiometric type accelerometer.	
	ii.	Explain the measurement of torque using strain gauge torque method.	(April 11)
6.	i.	Discuss specications of LVDT.	
	ii.	What are the advantages of using a foil type strain gauge.	(April 11)
7.	i.	With a neat schematic describe the vibrating wire force transducer.	
	ii.	Write short notes on strain gauges and their applications.	(April 11)
8.		Discuss in detail about.	
	i.	Total radiation pyrometers	
	ii.	Optical pyrometers.	(April 11)
0			. 1 . 1.1

9. A resistive position transducer with a resistance of 5 k ohm and a shaft stoke of 8 cm is applied with a voltage of 5 V. When the wiper is 3 cm from the reference, what is the output voltage? (April 11)

10. What is meant by the distortion factor? How can this factor be measured ? Explain with the help of a block diagram. (April 11)

11. i. ii.	What is a self generating Transducer? What is a thermocouple?	(May 10)
12. i) 13. i. ii.	Describe pressure measurement using the following: LVDT ii) Photoelectric transducers. iii) Oscillation transducers. What is Hystersis in a transducer? Explain. Write short notes on Errors due to i) Noise and drift ii) Frequency.	(May 10) (May 10)
14. i.	Explain various methods of measurement of output of thermo couples.	
ii.	What is an LVDT? Explain its construction and operation with neat sketches.	(May 10)
15. i. ii.	Discuss the advantages and disadvantages of the capacitive transducers. The output of an LVDT is connected to a 5V Voltmeter through an amplifier whose amplifica 250. An output of 2 mV appears across terminals of LVDT when the core moves through a dis 0.5mm. Calculate the sensitivity of the LVDT and the whole set up. The millimeter scale has The scale can be read to $15th$ of a division. Calculate the resolution of the instrument in mm.	tion factor is stance of 100 divisions. (May 10)
16.	Explain the flow measurements using thermistors.	(May 10)
17. i. ii.	What is a self generating Transducers? What is a thermocouple?	(May 09)
18. i. ii.	Discuss in detail about strain gauge Rosettes. The strain gauge having a gauge factor of 2 is connected in a bridge circuit having an excitati 8V. The resistances are equal. It is subjected to a strain of 0.006. If this output is to represent scale deflection of a recorder, what should be the gain of the amplifier. The full scale input	on voltage 2/3rd of full
19. i. ii.	what do you understanding by an analog Transducer and a Digital Transducer? Give examp What are the errors in a Transducer?	(May 09) bles. (May 09)
20.	A shaft is to transmit power up to 44kW at a constant speed of 25rps an it is proposed that sensed by a pair of torque strain gauges bonded to specially machine potion of the shaft. The be connected pushpull in an equiarmed voltage sensitive bridge, the output of which is to b power units. If the maximum strain value of the gauges is 0.0015, their resistance is 120 an is 2.1, calculate	the torque be gauges are to e calibrated in d gauge factor
i.	the diameter of the steel shaft to which they are to be bonded, if its modulus of elasticity is 20 m2.	00×109N/
ii. iii.	the output voltage at full power if the excitation of the bridge is $6V$. the sensitivity of the bridge in V/kW.	(May 09)
21.	A thermopile arrangement of a copper constantan thermocouple consists of free junction parts the reference junction at 2000 0C. If the output voltage is 3.3mv, determine the temperature of detecting junction. The calibration chart of the thermocouple is	s and has f the
	Temp(0C) 100 200 250 Voltage (mV) 4.22 9.23 11.95	(May 09)
22.	Explain about the following:	
i. ii.	bonded wire strain gauges bonded metal foil strain gauges.	(May 09)
23. ii.	i. Explain the operation of DC Tachometer generators. What are it's advantages and disa Explain Strobotran with a neat sketch.	dvantages. (May 09)

- 24.i. Discuss the characteristics of materials used for potentiometers.
 - A voltage dividing potentiometer is used to measure an angular displacement of 600 and the total angle travel of the potentiometer is 3550. Calculate the voltage output on open circuit if the potentiometer is excited by a 60V source. Calculate the actual value of the output voltage at this setting if a voltmeter of 1M resistance is connected across the output. The resistance of the potentiometer is 1K. Calculate the % error.

(May 09)

- 25.i. Explain shaft speed measurements using Stroboscope with a neat sketches.
 - ii. What are the advantages and disadvantages of moving magnet type linear velocity transducer.

(May 09)

- 26.i. Discuss in detail about turbine meters including their advantages and limitations.
 ii. Describe pressure measurement Piezoelectric transducers with neat sketches. (May 09)
- 27. A piezoelectric transducer has a capacitance of 1000pF and a charge sensitivity of 40×10^{-3} C/m. The connecting cable has a capacitance of 300pF while the oscilloscope used for readout has an input resistance of 1M and a parallel capacitance of 50pF.

(Sep 08)

35.

- i. what is the sensitivity of the transducer alone?
- ii. (V/m) of the entire measuring system?
- iii. what is the lowest frequency that can be measured with a 5% amplitude error by the entire system
- iv. what is the value of external shunt capacitance that can be connected in order to extend the range of 5% error down to 10 Hz.?
 - v. What is the high frequency sensitivity, when the external shunt capacitance calculated in
 - vi. is connected in the circuit.
- 28. i. Explain the input and ouput characteristics of the transducers.(Sep 08)ii. Discuss the materials used for potentiometers.
- 29. Explain the factors that influence the selection of a transducer. (Sep, Apr 08)
- 30. i. Discuss in detail about the principle of operation of a capacitive transducer
 ii. What is the relation between sensitivity and area of plates (Sep 08, 06, Apr 06,05,04)
- 31. What is the frequency response of Piezo electric transducer? (Sep, Apr 08, 06)
 32. i. Explain about photo diode and photo transistor ii. Explain in detail about thermocouples (Sep 08, 06, Jul, Apr 05, 04)
 33. i. Discuss in detail the operation of LVDT?
 - ii. What are the advantages and disadvantages of LVDT? (Sep 08, Jul 05, Apr 04,03)
- 34. i. Discuss the materials used for potentiometers. (Apr 08)
 ii. A voltage dividing potentiometer is used to measure an angular displacement of 600 and the total angle travel of the potentiometer is 355°. Calculate the voltage output on open circuit if the potentiometer is excited by a 60V source. Calculate the actual value of the output voltage at this setting if a voltmeter of 1M resistance is connected across the output. The resistance of the potentiometer is 1K. Calculate the % error.
- 36. i. Show and explain the capacitive transducer arrangement to measure angular velocity and what are its limitations?
 - ii. What are the disadvantages of capacitive transducers?

Explain the operation of Control type synchro system.

iii. What are the uses of capacitive transducers?

(Apr 08, Sep 06)

(Apr 08)

37.		Explain in det	ail the appli	cations of p	photodevices?				(Apr 07)
38.	ii.	i.What (Apr 07, 06) Explain in deta	are ail the work	the ting of indu	various ctive transducer	types rs operating of	of n the princ	inductive iple of eddy cur	transducers? rents?
39.	i. ii. iii.	Where are pier Give the equiv Explain the co	zoelectric tr valent circui	cansducers i it of a crystand working	mainly used and al and explain h g of strain gauge	l why? ow a crystal is e.	s used as a	transducer?	ep, May 06)
40.	i. ii.	Show with an What is tempe	example, he erature co-eo	ow the capa cient of resi	citive transduce stor? Explain ir	er has exceller 1 detail.	nt frequenc	cy response?	(Sep 06)
41.	i. ii.	Explain the wo Derive an exp	orking of a ression for	piezoelectri gauge facto	c transducer wi r for a strain ga	th suitable equ uge.	uations and	d sketches.	(Sep 06)
42.	i. ii. iii.	Explain the Transducer Inverse tran Output trans	following sducer sducer	with suit	able example	s:		(Jul 0)	6, Apr 05)
43.	i. ii. iii. iv.	Define gauge Derive an exp What is the ma How will you	factor for a ression for t ain factor de achieve it?	transducer? this factor f esirable for	or a strain gaug a strain gauge?	e?			(May 06)

- 44. i. What are the advantages and disadvantages of a capacitive transducer?
 ii. A barium titanate pick up has the dimensions of 5mmx5mmx1.25mm.The force acting on it is 5N.The charge sensitivity of barium titanate is 150 PC/N and its permittivity is 12.5x10-9 F/M. The force acting on it is 5N. If the modulus of elasticity of barium titanate is 12x106 N/M2.Calculate the strain, he charge and the capacitance. (Apr 06, 05)
- 45. i. What are the advantages and disadvantages of a capacitive transducer?

ii. A barium titanate pick up has the dimensions of 5mm x 5mm x 1.25mm. The force acting on it is 5N. The charge sensitivity of barium titanate is 150 PC/N and its permittivity is 12.5 x 10-9 F/M. The force acting on it is 5N. If the modulus of elasticity of barium titanate is 12 x 106 N/M2. Calculate the strain, he charge and the capacitance. (Jul 05 Apr 03)

- 46. What are the crystalline materials used as transducers. What are their merits and demerits? Derive an expression for finding the voltage developed across a crystal. Explain how temperature affects it?(**Apr 05**)
- 47. Name some common types of strain gauges? What characteristics determine the size of the strain gauge? Explain the functioning of a foil type strain gauge. (Apr 05)
- 48. i. What are the modes of operation of piezo electric crystals? Explain in detail.
 ii. Draw the equivalent circuit of piezo electric transducer.
 iii. Explain the properties of piezo electric crystals. (Apr 05)
 49. i. What is Rosettes? Explain with neat sketches the different forms of it.
 ii. Explain semiconductor strain gauges. (Apr 05)
- 50.Describe the working of LVDT with a neat sketch.(Nov 04)
- 51. i. What is piezo resistive effect

- ii. Explain about semiconductor strain gauges
- iii. What are the advantages and disadvantages of semiconductor straingauges (Apr 04)
- 52. i. Explain advantages and disadvantages of electrical transducers over mechanical transducers
 - ii. What are the digital transducers . Give examples (Apr 04)
- 53. What are the different types of inductance transducers?Explain their basic principle of operation.(Apr 04)
- 54. Describe the construction and working of the following types of accelerometers and state its advantage and disadvantage (a) LVDT type (b) Potentiometer type. (Nov 03)
- 55. i. Briefly describe the different criteria for selection of transducer for a particular application
 - ii. Explain the differences between Primary and Secondary transducers. (Apr 03)
- 56. i. Explain gauge sensitivity in case of a strain gauge. Derive an expression for the output voltage of a wheat stone bridge when one of the arms is a strain gauge.
 - ii. A strain gauge bridge has one arm as strain gauge with a gauge factor of 2.2. the resistance value of strain gauge and other arms is 120. Find the bridge output voltage (with output open circuited) for a supply voltage of 3V when the strain gauge is subjected to 600 micro strain. (Apr 03)
- 57. i. What is the gauge sensitivity? Explain with a neat sketch to find the sensitivity of a half bridge.
 - ii. Two electrical strain gauges are bonded to a duralumin cantilever and connected a bridge as adjacent arms. Each gauge has a resistance of 100 and a gauge factor of 2.1. the input voltage is 4V. The stress is 200MN/m2. Find the current through the detector if its resistance is 400. Modulus of elasticity of duralumin is 70 GN/ m2. (Apr 03)
- 58. Discuss the characteristic and choice of transducers.
- 59. Explain the constructiona and working principle of resistive transducers.
- 60. Explain the construction and working princple of synchros.
- State and explain active type of transducers. 61.

UNIT-VII

- 1. Explain the measurement of angular velocity using D.C tachometer generator. (May 12)
- What are the specications of potentiometers? What are its merits and demerits? 2. i.

ii. What is gauge factor and poission's ratio.

3. Explain with a neat block diagram for time interval measurement and explain each block and its functionalities.

(April 11)

- 4. i. Explain shaft speed measurements using Stroboscope with a neat sketches.
 - ii. What are the advantages and disadvantages of moving magnet type linear velocity transducer?

(May 10)

- Explain the construction and working of seismic accelerometer. Discuss its characteristics. 5. i.
 - ii. An accelerometer has a seismic mass of 0.05kg and a spring constant of 3x10³ N/M. Maximum mass displacement is $0.02m\pm$ (before the mass hits the stop). Determine maximum measurable acceleration and natural frequency of the system. (May 10)

(May 12)

- 6. i. Discuss briefly about piezoelectric accelerometers.
 - ii. A piezoelectric accelerometer has a transfer function 61mV/g and a natural frequency of 4500Hz. In a vibration test at 110Hz, a reading of 3.6V peak is obtained. Find the vibration peak displacement. (May 10)
- 7. i. Describe the construction and functioning of electromagnetic tachometers.
 - ii. A disc mounted on the shaft of the machine has 12 pattern points. The number of flashes projected on the disc by stroboscope is 6000 in a minute.
 - i) Find the speed of the machine if the disc appears stationary and has single image of 12 points.
 - ii) Find the speed, if the disc appears to move forward in the direction of rotation. (May 10)
- 8. Explain about magneto-strictive torque transducers.
- Discuss the principle of operation, advantages and disadvantages of drag cup type tachogenerator. (Sep 08)
- 10. i. Define gauge sensitivity and derive expression for it.
 - ii. In order to measure strain in a cantilever beam a single strain gauge of resistance 1 K and gauge factor 2 and temperature coefficient of $10 \times 10^{-6}/0$ C is mounted on one beam and connected in one arm of the bridge circuit. The other three arms of the bridge have resistances of 100 " each. The bridge detector resistance is 100 and it fs sensitivity is 10mm/ μ A
 - a. Calculate deflector'fs defletion for 0.1% strain

b. Calculate the change in effective strain indicated when the room temperature increases by 10° C.

- iii. Mention few devices that are used for the measurement of Rotary displacement.
- 11. i. Describe the following methods of temperature compensation for strain gauges (Sep 08)a. use of dummy gauge
 - b. half bridge method.
 - ii. A single electrical resistance strain gauge of resistance 120and having a gauge factor of 2 is bonded to steel having elastic limit stress of 400MN/m². and modulus of elasticity 200GN/m2.Calculate the change in resistance due to
 - a. change in stress equal to $1/10^{th}$ of the elastic range

b. change of temperature of 20 $^{\circ}C$ if the material is advanced alloy. The resistance temperature coefficient of alloy is 20 \times 10^{-6/ °C}.

c. Calculate the strain due to the differential expansion of the guage metal and steel, if coefficient of linear expansion of the steel is $12 \times 10^{-6/}$ °C and that of the advanced alloy is $16 \times 10^{-6/}$ °C.

12. i. Discuss briefly about piezoelectric accelerometers.

(Sep 08)

(Sep 08)

- ii. A piezoelectric accelerometer has a transfer function 61mV/g and a natural frequency of 4500Hz. In a vibration test at 110Hz, a reading of 3.6V peak is obtained. Find the vibration peak displacement.
- 13. Draw the neat sketch of different strain guages.
- 14. i. What is a load cell? Explain the working of a load cell strain gauge bridge.
 - ii. A load cell consists of a solid cylinder of steel 40mm in diameter with fours train gauges bonded to it and connected in to the four arms of a voltage sensitive bridge. The gauges are mounted to have Poisson's arrangement. The gauge factor is 2.1 and each gauge has 1000 ohms resistance. The bridge excitation voltage is 6v. Determine the sensitivity of the cell in V/KN modulus of elasticity for steel is 200GN/m2 and Poisson ratio is 0.29. (Sep, Apr 08, 06, 03, July 05)

(May 09)

(Sep 08)

- 15. i. What is the gauge sensitivity? Explain with a neat sketch to find the sensitivity of a half bridge.
 - ii. Two electrical strain gauges are bonded to a duralumin cantilever and connected a bridge as adjacent arms. Each gauge has a resistance of 100 and a gauge factor of 2.1. the input voltage is e stress is 200MN/m2. Find the current through the detector if its resistance is 400. Modulus of elasticity of duralumin is 70GN/m2. (Sep, Apr 08, Jul, Apr 05)
- 16. i. Explain the method of adjacent arm compensating gauge for temperature compensation in strain gauge with a neat circuit.
 - ii. A single electrical resistance strain gauge of resistance 120 and having a gauge factor of 2 is bonded to steel having an elastic limit stress of 400MN/m2 and modulus of elasticity 200 GN/m2. calculate the change in resistance due to a change of temperature of 200C. co-efficient of linear expansion of steel is 12x10-6/0C. (Sep 08, Apr 08, 03)
- 17. What is ionization chamber? Explain its special features.
- 18. i. Explain the operation of DC Tachometer generators. What are it's advantages and disadvantages.
 - ii. Explain Strobotran with a neat sketch.
- 19. i. Discuss the principle of operation of strain gauge. What is gauge factor? Compare some of the important characteristics of metallic and semiconductor type strain gauges.
 - ii. A resistive strain gauge with a gauge factor of 2 is fastened to a member which is subjected to a strain of 1 x 10-6. If the original value of gauges is 130 ohms, calculate change in resistance.(Apr 08, Jul 05)
- 20. i. Explain in detail the application of RVDT.ii. Discuss in detail the operation of a synchros
- 21. i. Discuss in detail about strain gauge Rosettes. (Apr 08)
 ii. The strain gauge having a gauge factor of 2 is connected in a bridge circuit having an excitation voltage 8V. The resistances are equal. It is subjected to a strain of 0.006. If this output is to represent 2/3rd of full scale deflection of a recorder, what should be the gain of the amplifier. The full scale input voltage of the recorder is 1V.
- 22. i. Explain the method of measurement of linear displacement using potentiometer
 ii. A helipot is provided with 40 turns/mm. The gearing arrangement is such that the motion of the main shaft by one revolution causes 5 revolutions of the potentiometer shaft. Calculate the resolution of the Potentiometer? (Sep Apr 06, 03)
- 23. i. A single strain gauge is mounted to measure the axial strain in a simple tensile member If the recorded strain is 380 micro strain . what is the axial stress.a. if member is steelb. if member is alluminium
 - ii. What are the advantages of electrical transducers
- 24. i. Explain in general, the measurement of torque using digital technique compare the merits of multi toothed flange over single toothed flange. Give the necessary sketch.
 - ii. Explain the measurement of torque using strain gauge torque method. Also give the advantages of this method. (Sep 06, Jul 05)
- 25. i. Explain the principle and measurement a torque using magneto-strictive transducer
 - ii. A mild steer shaft is used to connect a motor drive to a constant load torque. A foil strain gauge having a resistance of 120 ohms and a gauge factor 2 is mounted on a shaft with its active axis at angle of 45 degrees to the axis of the shaft. The shear modules of steel is 80GN/m2, the shaft radius is 15mm and the change in strain gauge resistance due to the load 0.240hms. Find the load torque.

(Apr 08, 06, 04, 03)

(Sep 06, Apr 04, 03)

(Apr 08, May 04)

(Apr 08)

(Sep, Apr 06, 04)

- 26. i. Describe the construction and working of LVDT accelerometer with a neat sketch
 ii. An LVDT is used in an accelerometer to measure seismic mass displacement.
 The LVDT and signal conditioning outputs are 0.31mv/mm with a± 20mm core displacement. The spring constant is 240N/m and the core mass is 0.05kg. Find
 a. relation between acceleration in m/s2 and the output voltage (Sep 06, Apr 05)
 b. natural frequency and
 c. maximum acceleration measurable
- 27. i. Explain how a load cell is employed to measure static and dynamic forces.
 ii. Derive the expression for gauge factor for a strain guage. (Sep 06)
- 28. i. Name some common types of strain gauges?
 - ii. What characteristics determine the size of the strain gauge?
 - iii. Explain the functioning of a foil type strain gauge. (Sep 06)
- 29. i. Discuss the specifications of LVDT
 - ii. A copper constantan thermocouple with a= 3.75*10-2 and b=4.5*10-5 mv/oC . If T1= 100oC and cold junction compensation T2 is kept in ice, compute resulting emf(Apr 06, 04)
- 30. i. What are the applications of LVDT?
 - ii. A steel cantilever is 0.25mm long, 20mm wide and 4mm thick.
 a. Calculate the value of deflection at the free end for the cantilever when a force of 25N is applied at the end. The modulus of elasticity for steel is 200 GN/M2. An LVDT with a sensitivity of 0.5/mm is used. The voltage is read on a 10V voltmeter having 100 divisions. Two lengths of a division can be read with certainty
 b. Calculate the minimum and maximum value of force that can be measured with this arrangement?
- 31. i. Compare the advantages and disadvantages of DC tachometer generation and AC tachometer generator.
 - ii. A variable reluctance type tachometer has 60 rotor teeth. The counter records 3600 counts per second. Determine the speed in rpm. (Jul 05)
- 32. i. What are the primary detectors? Explain in detail?
 ii. A torque bar of 30 mm diameter is used for measurement of a torque of 100 NM. Calculate the angel of twist if shear modulus of mild steel is 80 x 109 N/M2 (Jul 05, Apr 04)
- 33. i. What is dynamic compensations? Explain the compensation adjustment scheme in a hot wire anemometer using squire wave current source.
 - ii. Explain how torque can be measured using an Inductive transducer. Give the sketch for arrangement of inductive transducers with respect to shaft. (Jul 05)
- 34. i. Explain the method of measurement of linear displacement using potentiometer
 ii. A heliport is provided with 40 turns/mm. The gearing arrangement is such that the motion of the main shaft by one revolution causes 5 revolutions of the potentiometer shaft. Calculate the resolution of the Potentiometer? (Apr 05)
- 35. i. A round steel bar of .03mm in diameter is .5m long and is subjected to a tensile force of 40kg where E = 3 X 106 kg/m2. Find the elongation in meters
 - ii. Write short notes on strain gauges and their applications (Apr 05)
- 36. i. Explain the measurement of torque of rotating shaft using multi toothed wheel.
 - ii. A digital meter is used to determine the torque in a rotating shaft using single toothed flanges and inductive pickups. Static calibration show that the flange twist by an angle of

(Jul 05)

one degree for an applied torque of 1000Nm. In a test with the shaft rotating at 500rpm, the torque calculated from the timer readings is 1200Nm. What is the maximum possible error of final digit on the timer display represents units of 10-5 s, and accuracy of instrument specified 0.05% of the reading ± 1 in the final digit. (Apr 05)

- 37. i. What is a full bridge. Derive an expression for gauge sensitivity of a full bridge.
 - ii. A bridge circuit has two fixed resistances and two strain gauges all of which have a value of 1200. The gauge factor is 2.04 and the strain applied to twin strain gauges one in tension and the other in compression is 0.000165. If the battery current in the initial balanced condition of the bridge is 50mA determine. a. voltage o/p of the bridge b. The sensitivity in volt per unit strain (Apr 05)
- 38. What is a strain gauge? What is its principle of operation? Derive an expression for the gauge factor of a strain gauge. (Nov 04)
- 39. i. What are primary detectors. Explain in detail
 ii. A torque bar of 30mm diameter is used for measurement of a torque of 100 NM .Calculate the angle of twist is shear modulus of mild steel is 80 * 10(9) N/m2 (Apr 04)
- 50. An LVDT with a secondary voltage of 5.2 V has a range of ± 1.5 cm determine 1. the output voltage when the core is -1.0 cm from center 2, the plot of output vs core position for a core movement going from 0.8 cm to 0.1 cm (Apr 04)
- 51. i. A round steel bar of 0.03 mm in diameter is 0.5m long and is subjected to a tensile force of 40kg where E = 3x10(6) Kg/m2. Find the elongation in meters
 - ii. Write short notes on strain gauges and their applications (Apr 04)
- 52. i. A round steel bar of .03mm in diameter is .5m long and is subjected to a tensile force of 40kg where E = 3 x 106 kg/m2. Find the elongation in meters.
 - ii. Write short notes on strain gauges and their applications. (Apr 04)
- 53. i. A strain bridge comprises of two fixed resistors each of value 120 ohms one active gauge and an un strained temperature compensation gauge. The two gauges are of unstrained resistance 120 ohms and gauge factor 2.2. Find the bridge output voltage for a supply voltage of 3V when the active gauge is subjected to 600 micro strain
 - ii. A single strain gauge having resistance of 120 1: is mounted on a steel cantilever beam at a distance of 0.15m from the free end. An unknown force F applied to the free end produces a deflection of 12.7 mm of the free end. The change in gauge resistance is found to be 0.152 LThe beam is 0.25m long with a width of 20 mm and a depth of 3mm.The young's modulus for steel is 200GN/M2.Calculate the gauge factor? (Apr 04)
- 54. i. Give the advantage of digital methods in measuring angular velocity over electromechanical methods.
 - ii. Explain the measurement of angular velocity using photo electric tachometer .Also give advantage and disadvantage of the method (Apr 04)
- 55. i. Explain in general the measurement of torque using digital technique. Compare the merits of multi toothed flange over single toothed flange .Give the necessary sketch.
 - ii. Explain the measurement of torque using strain gauge torque method . Also give advantages of this method. (Apr 04)
- 56. i. Explain with a neat sketch the measurement of angular velocity using toothed rotor variable reluctance

tachometer. Give the advantage and disadvantage of this method.

- ii. An inductive pick off operating from a 120 tooth wheel is used with a digital frequency meter to measure the speed of rotation of the shaft on which the wheel is mounted. The gating period is set to 0.01 see and a reading of 0030 is obtained on the four digit display. What shaft speed does this in r.p.s. If the available gating periods are 102,103,104,105,106 and 107micro seconds respectively, what would be the optimum setting of gating period for making this measurement. (Apr 04)
- 57. i. What is a torsion bar and how is it used for torque measurement ii. What is the principle of ultra sonic flow meter with heat sink (Apr 03)
- 58. i. Explain the measurement of torque of rotating shaft using multi toothed wheel.
 ii. Explain principle and measurement of torque using magneto strictive transducer (Apr 03)

UNIT-VIII

1.

(May 12) Explain the principle of thermocouple vacuum gauge. 2. i. ii. With neat diagram explain determination of liquid level employing variable permeability method. (April 11) 3. Explain the ow direction measurement using hot wire anemometer. Give a neat sketch. i. ii. Explain the constant current method of measurement of ow. (April 11) 4. Classify the various types of pressure measuring instruments. (Ma y 10) 5. Explain the principles and operation of ultrasonic flow meters. (Ma y 10) i. Mention various types of instruments used for temperature measurement. 6. ii. Describe the temperature measurement with resistance thermometers. (May 09)

What is the principle of ultrasonic ow meter? Explain the operation of ultrasonic ow meter with neat sketch.

- 7. i. Mention various types of instruments used for temperature measurement. (Sep 08)
 ii. Describe the temperature measurement with resistance thermometers.
- 9. i. Describe the principle and operation of Knudsen gauge with a neat sketch. (Sep, Apr 08)
 ii. Describe the operation of Ionization gauges for pressure measurement.
- 10. i. What is a Radiation pyrometer? Explain the principles used for radiation temperature measuring devices.
 ii. Explain the black body conditions.
 iii. Write a short notes on quartz crystal thermometer. (Sep 08)
- 11. i. Explain with a neat sketch the measurement of angular velocity using toothed rotor variable reluctance tachometer, Give the advantage and disadvantage of this method.
 - ii. An inductive pick off operating from a 120 tooth wheel is used with a digital frequency meter to measure the speed of rotation of the shaft on which the wheel is mounted. The gating peirod is set to 0.01 sec and a reading of 0030 is obtained on the four digit display. what shaft speed does this in r.p.s If the available gating periods are 102, 103, 104, 105,

		106 and 107 micro seconds respectively, what would be the optimum settin period for making this measurement.(Sep 08)	ng of gating , Apr 06)
12.	i. ii.	Discuss in detail about turbine meters including their advantages and limitations. Describe pressure measurement Piezoelectric transducers with neat sketches.	(Apr 08)
13.	i. ii. iii.	Write a short notes on the following: Electromagnetic flow meter Inductive method of liquid level measurement thermocouples.	(Apr 08)
14.	i. ii.	Discuss about the radiation receiving elements used in Radiation pyrometers. The emitted radiant energy from a piece of metal measured and the temperature is found assuming surface emissivity of 0.82. It was later found that the true emissivity is 0.75. Calcul the temperature measurement.	(Apr 08) to be 1065 °C ate the error in
15.		Discuss the merits and demerits of constant temperature method over constant current measurement of flow using hot wire Anemometer.	ent method of Apr 08, 07)
16.	i.	Compare advantages and disadvantages of dc tachometer generator and ac	tachometer
	ii.	generatorA variable reluctance type tachometer has 60 rotor teeth . The counter speed rcounts per second . Determine the speed in rpm.(Apr 08, 04)	records 3600 , Sep 06)
17.		With a neat sketch explain the measurement by constant temperature Anemometer.	(Apr 07)
18.	i. ii.	Explain the operation of a thermocouple for the measurement of temperature? Explain in detail about photo voltaic and photo conductive cells? (Sep 06,J 03)	ul 05, Apr
19.	i.	Discuss the list of various transducers that are used as secondary transducers measurement	in pressure
	ii.	Explain pressure measurement using resistive transducer (Sep 06	, Apr 04)
20.	i. ii.	Explain principle of thermocouple vaccum gauge Explain measurement of vaccum using pirani gauge (Sep 06	, Apr 03)
21.		Explain the equivalent circuit of piezoelectric crystal under conditions of load. What a piezoelectric transducers? Draw the experimental set up measuring force using piezoelectric (Apr 05)	re the uses of crystal.
22.		What are the main characteristics of a high vacuum gauge? How are they used for Enumerate the principles behind an inductive transducer.	measurement? (Apr 05)
23.		Explain the principle of thermistor ? And state the applications?	(Apr 05)
24.		What is the principle of ultrasonic flow meter. Explain the operation of ultraser with neat sketch.	rasonic flow (Apr 05)
25. ii.	i. De	Explain the measurement of pressure using piezo-electric transducer sign a column type load cell using Nickel steel as the member and strain.	(Apr 05)
26.		Describe the working of a Hot wire anemometer with a neat sketch.	(Nov 04)
27.		Explain in detail about any 2 transducers used for the temperature measurement.	(Nov 04)
28.		Explain different forms of construction of thermistors.	(Apr 04)

- 29. i. Explain measurement of pressure using capacitive transducer.
 - ii. Design a column type load cell using nickel steel as the member and strain gauge at "advance" material to measure the stress developed, with temperature compensation for variations in young's modulus in the range 25°c to 100°c. (Apr 04)
- 30. i. Explain the differential pressure measurement using inductive transducer in combination with a bridge. Derive an expression for the output voltage of the bridge.
 - ii. Explain how load cells are used in weight measurement with a suitable sketch. (Apr 04)
- 31. i. Explain the measurement of differential pressure using capacitive transducer.
 ii. Explain how pressure can be measured using photoelectric transducer. Give the necessary diagrams.
 (Apr 04)
- 32. i. Explain the working of a oscillation transducer in the measurement of pressure.
 - ii. Explain the measurement of pressure using piezo-electric transducer. (Apr 04)
- 33. Describe with a neat sketch the principle and construction details of resistance thermometer and thermistor.Draw its characteristics curve and state its merits and demerits. (Nov 03)
- 34. i. With suitable diagram, explain a method for force measurement.
 ii. Explain the principle of capacitive transducer and show how it can be used for displacement measurement.
 iii. Under what condition a dummy strain gauge used and what is the function of that gauge. (Nov 03)
- 35. i. Describe the working and theory of an ultrasonic flow meter. List its advantage.
 ii. Explain with suitable diagram a method by which velocity measurement can be done. (Nov 03)
- 36. i. Expain measurement of pressure using capacitive transducer gauge at advance material to measure stress developed, with temperature compensation the range 25° C to 100° C for variations in youngs modulus in (Apr 03)
- 37. i. Explain differential pressure measurement using inductive transducers in combination with a bridge. Derive an expression for output voltage of bridge.
 - ii. Explain how load cells are used in weight measurement with a suitable sketch (Apr 03)
- 38. i. Describe the measurement of liquid level using capacitive transducer in case of insulating and conducting liquids.
 - ii. Explain how the capacitance transducers are used in measurement of non-electrical quantities? Give neat sketch. (Apr 03)
- 39. i. Explain the principle of operation of electromagnetic flow meter. Describe how flow is measured with a neat sketch.
 - ii. Give the block diagram and explain the operation of a servo-operated electromagnetic flow meter to measure flow rate. (Apr 03)
- 40. i. Discuss the merits demerits of constant temperature method over constant current method of measurement at flow using hot wire anemometer. (Apr 03)
 - ii. With a neat sketch explain the measurement by constant temperature anemometer.

41.		Explain the various electrical pressure transducers.	(Apr 03)
42.	i. ii.	Explain with relevant circuit the ultrasonic measurement of fluid velocity. Derive an expression for gage factor of strain gauge.	(Apr 03)
43.		Explain the working principle of hot wire anemometer	

44. Is thermometer a temperature transducer? Justify your answer.

45. State and explain the temperature transducer based on negative coefficient of temperature materials.